時間:2023-03-17 18:00:53
導(dǎo)語:在英語論文的撰寫旅程中,學(xué)習(xí)并吸收他人佳作的精髓是一條寶貴的路徑,好期刊匯集了九篇優(yōu)秀范文,愿這些內(nèi)容能夠啟發(fā)您的創(chuàng)作靈感,引領(lǐng)您探索更多的創(chuàng)作可能。
EE6442 Assignment 3
Fan Zhang
University of Limerick
MEng. Computer and Communication Systems
ID: 0526401
Abstract: I am a video game fan, but not an addict. Since this topic attracted me a lot, I decided to choose this one as my topic for the third assignment of Processor Architecture Module. I started to play video games since I was five. While I was playing games, I found the game console itself just like a mystery, how could they react our actions to the controller then reflects so amazing pictures on TV? Although I have read a lot about it in game magazines, I admit that I didn’t try to find the answer until I found this topic. This is a great chance for me to answer the question myself. At the same time, I want to present you this paper, which should be fun.
This paper concerns the differences of architecture between PC and PlayStation 2. Since the purposes of PC and PlayStation 2 are different (or maybe I should say the purposes of PC include that of PlayStation 2), the different objectives decide the different design orientation. I think PlayStation 2 is a good game console for the comparison. First, a lot of documentations about PlayStation 2’s Emotion Engine can be found in the Internet. Second, as far as I know, PlayStation 2’s design has straightforward purposes: 3D games and multimedia, which makes the game console is seemed to be born for these two reasons. Contrasts to PlayStation, current PCs do very well on these two aspects, but the cost is the unstoppable upgrade of hardware. PlayStation 2 is a product born 5 years ago. Today tens of millions of people are still enjoy PlayStation games at home. 5-year-old PCs have been washed out already.
Keywords: PC, processor, video card, system controller, bus, Emotion Engine, Vector Unit, Graphics Synthesize.
1. INTRODUCTION
1.1 The evolution of game performance
The computer technology has achieved rapid evolution this year. From Figure 1.1 to Figure 1.5 you can see, in almost twenty years, how great changes of game performance are, both PC and game consoles.
Figure 1.1: Final Fantasy I (FC) 1987 by SQUARE
Figure 1.2: Final Fantasy XII (PlayStation 2) 2006 by SQUARE ENIX
Figure 1.3: Prince of Persia (PC) 1989 by Broderbund
Figure 1.4 Prince of Persia: The Two Thrones (PC) 2006 by Ubisoft
The screenshots above are the evidences of technique developments. In these twenty years, computers are almost 10 times faster than in the 1980’s. The cost of buying a computer is decreasing simultaneously. However, the development orientations of both PC and game consoles didn’t change much during these 20 years. Here I want to say game consoles and PC are different, although they both can be classified to ‘computer’ class, although PC includes all game consoles’ functions (but the software are not compatible each other). The differences include many areas, the architecture, the media, the software producing and selling model, and the customers.
1.2 Why they are different?
I would rather to say it is because of the distinct purposes. Of course PC can play games, can do anything that game consoles do, and in the present, PlayStation 2, the most famous game console in the world, can connect to Internet, can print paper, even can run complete Linux operating system, but PC is general purpose, this means PC should care too much things, and be good at almost everything. For instance, PC should be good at text processing, games, printing, Internet connection, a huge amount of protocols are settled for it; PC also need to compatible with all components and software that are designed and implemented by current standards. But game consoles are different. They need only care about games, which mean most designs are flexible. At the same time, the standards which PC has to obey do not affect it at all. No extra cost, no burden, only focus on games.
Figure 1.5: Sony’s PlayStation 2
1.3 Multimedia
From later 20th century, multimedia has become one of the main purposes of PC. Corresponding new technology for enhancing the capability of multimedia processing on PC has been developed as well. However, the reality of transmission speed bottleneck hasn’t been changed much. Keith Diefendorff and Pradeep K. Dubey published an article named “How Multimedia workloads will change Processor Design” in 1996. They argued the dynamic media processing would be a big challenge for current processor architecture. They also thought it will force the fundamental changes in processor design.
Before Pentium 4, the processors shared the same character: their data cache memory was big, but instruction cache memory was relatively small. It was quite useful for most usage, for instance, word editor, e-business, stock information processing, and so on. However, Diefendorff did not think it is useful, or efficient enough for multimedia processing, for multimedia data come and forth constantly, no need to settle a huge bulk of storage space for holding the information that rarely has chance of reuse. Contrarily, multimedia processing requires more calculation than others. So, for multimedia calculation, the instruction cache memory should become larger, both caches require faster transmission speed as well. We shall see this prediction has realized much in both Pentium 4 and PlayStation 2.
1.4 The purpose and the brief layout of the article
This paper is mainly talk about the architectural differences between PC and PlayStation 2, which is the most famous game console in the world. The article will discuss several aspects, the whole architecture, the CPU, the motherboard, and the graphics. In the following section, the whole architectures are compared. Two processors, Intel’s Pentium 4 and PlayStation 2’s Emotion Engine are discussed and compared in the third section. The fourth section is about the bus and caching comparison. The fifth section mainly talks about PC and PlayStation 2’s graphic devices, Video card and Graphics Synthesizer. The conclusion will be made in the last section.
2. WHOLE ARCHITECTURE COMPARISON
2.1 PC architecture
The basis of PC could root back to 1940’s. John von Neumann (1903-57), who constructed a very basis structure of computer, stayed his name in the history forever. The architecture of modern PC is still based mainly on his architecture. Let’s see a diagram of PC architecture as our basis of illustrating how PC works for game performance in the future.
Figure 2.1: PC architecture--------------------------------->
Different regions in the diagram have different clock speed. We can see the system controller is the heart of whole PC system. It carries data between processor and other components in PC over bridge. The bridge is used to connect interfaces and buses. Two kinds of bridges exist in PC, North Bridge (the system controller) and south bridge (the bus bridge). The system controller provides an interface between the processor and external devices, both memory and I/O. The system controller works with the processor to perform bus cycles.
From the diagram we can see, the system controller makes the whole diagram to be complicated. This is because the system controller has to adjust the bus cycles between the processor and the external device that it wants to access. Briefly, the PC’s working procedure can be described as follow:
PC executes commandsèaccess data with the help of system controllerèreturns the execution resultèexecute commandsè…
System controller also possesses the function of controlling DMA (Direct Memory Access), which is the ability to transfer data between memory and I/O without processor intervention.
2.2 PlayStation 2 Overview
Let’s first see the architecture of PlayStation 2.
Figure 2.2: the architecture of PlayStation 2---------------->
PlayStation 2 is composed of a graphics synthesizer, the Emotion Engine, the I/O Processor (IOP), and a Sound Processor Unit (SPU). The IOP controls peripheral devices such as controller and disk drive and detect controller input, which is sent to the Emotional Engine. According to this signal, the Emotional Engine updates the internal virtual world of the game program within the video frame rate. Many physical equations need to be solved to determine the behavior of the character in the game world. After this is determined, the calculated object position is transformed according to the viewpoint, and a drawing command sequence (display list) is generated. When the graphics synthesizer receives the display list, it draws the primitive shape based on connected triangles on the frame buffer. The contents of the frame buffer are then converted from digital to analogue, and the video image appears on the TV. Finally, the Sound Processor is in charge of sound card thing, it outputs 3D digital sound using AC-3 and DTS. This is the overview of PlayStation 2 working procedure.
2.3 Comparison
Compare Figure 2.1 and Figure 2.2, we can see that the PC’s architecture is far more complex than that of PlayStation 2’s. There are many reasons. PC has more devices has to care. For instance, PlayStation’s I/O processor, which is act as the same role as the system controller bus in PC, the chief responsibility of this chip is to manage the different devices attached to the PS2. 2 PlayStation controller port, and MagicGate-compatible memory card interface, 2 USB ports, and a full-speed 400Mbps IEEE 1394 port, which are much less than PC. The other main reason is processor’s speed increased much faster than other devices; the devices themselves had uneven speed increments as well. In general, PlayStation 2 has simpler architecture and less components and devices.
3. ALL ABOUT PROCESSORS
3.1 Pentium 4 Processor
Pentium 4 adopts Intel’s 7th generation architecture. We can see in detail from the diagram below. Since the birthday of PlayStation 2 waiting for exploring was 4th March 2000, when Pentium 4 was not published yet. It is unfair to PlayStation 2. However, Pentium 4 is the most popular processor in the present, and PlayStation 2 is globally the most popular game console, whatever.
Figure 3.1: Pentium 4 processor architecture
Since the previous generation architecture (Pentium III) Intel began to use hybrid CISC/RISC architecture. The processor has to accept CISC instructions, because it has to be compatible with all current software (most software is written using CISC instructions). However, Pentium 4 processes RISC-like instructions, but its front-end accepts only CISC x86 instructions. A decoder is in charge of the translation. Intel doesn’t create the path for programs using pure RISC instructions.
CISC instructions are rather complex, decoding one may cost several clock cycles. In Pentium III era, once a CISC instruction needed to be processed several times (i.e. a small loop), the decoder had to decode the instruction again and again. In Pentium 4 this situation has been improved by replacing Pentium III’s L1 instruction cache to Trace Cache, which is placed behind the decoder. The trace cache ensures that the processor pipeline is continuously fed with instructions, decoupling the execution path from a possible stall-threat of the decoder units. After decoding stage, Intel introduces the Renamer/Allocator unit to change the name and contents of 32-bit CISC instructions of the registers used by the program into one of the 128 internal registers available, allowing the instruction to run at the same time of another instruction that uses the exact same standard register, or even out-of-order, i.e. this allows the second instruction to run before the first instruction even if they mess with the same register.
The other big advance of Pentium 4 is its SSE2 - The New Double Precision Streaming SIMD Extensions. 128-bit SIMD package offers 144 strong instructions. Intel prepares two SIMD instruction units for Pentium 4 (64-bit each), one for instructions, and the other for data. Let’s recall Section 1.3, Pentium 4’s 128-bit SIMD extension is Intel’s efforts for meeting the future requirements for multimedia implementations. Because of that, video, games implementation capability gained the drastic enforcement.
Pentium 4’s pipeline is the most disputable place. When it was announced, 20-stage pipeline surprised a lot of people. Intel did so because the more stage pipeline can increase the clock rate of processor. However, once the pipeline does not contain the information what processor need, the pipeline refill-time is going to be a long wait. In fact, Pentium 4 is only faster than Pentium III because it works at a higher clock rate. Under the same clock rate, a Pentium III CPU would be faster than a Pentium 4.
Figure 3.2: Pentium 4 Pipeline
The scheduler is a heart of out-of-order engine in Pentium 4. It organizes and dispatches all microinstructions (in other words, uops) into specialized order for execution engines.
Figure 3.3: Pentium 4 scheduler
Four kinds of schedulers deal with different kinds of microinstructions for keeping the processor busy all the time. The ports are Pentium 4’s dispatch ports. If you read the diagram carefully, you can see Port 1 and Port 0 each is assigned a floating-point microinstruction, Port 0 is assigned Simple FP Scheduler (contains simple Floating-point microinstructions) and Port 1 is assigned Slow / Floating Point Scheduler (contains complex floating-point microinstructions). Port 0 and Port 1 also accept the microinstructions came from Fast Scheduler. For the floating point microinstruction may run several clock cycles, Pentium 4’s scheduler monitor decides to transfer the microinstruction to Port 1 if Port 0 is busy, and vice versa. Port 2 is in charge of Load microinstructions and Port 3 deals with Store microinstructions.
3.2 PlayStation 2’s Emotion Engine
PlayStation 2’s designers focus deeply on the purpose of 3D games. At the same time, they had to ensure it was completely compatible with DVD video. For performing 3D games well, PlayStation 2 has to possess perfect vision and audio functions. Emotion Engine acts as the role of Geometry calculator (transforms, translations, etc), Behavior/World simulator (enemy AI, calculating the friction between two objects, calculating the height of a wave on a pond, etc). It also in charge of a secondary job of Misc. functions (program control, housekeeping, etc). In general, Emotion Engine is the combination of CPU and DSP processor.
Figure 3.4: The architecture of Emotion Engine
The basic architecture of Emotion Engine is show in Figure 14. The units are composed of
(1) MIPS III CPU core
(2) Vector Unit (two vector units, VU0 and VU1)
(3) Floating-Point Coprocessor (FPU)
(4) Image Processing Unit (IPU)
(5) 10-channel DMA controller
(6) Graphics Interface Unit (GIF)
(7) RDRAM interface and I/O interface.
Something interesting in the diagram you may have noticed. First, inside the Emotion Engine, there is a main bus connects all components for data communication. However, between MIP III core and FPU, VU0 and MIP III, VU1 and GIF, there are dedicate 128-bit buses connect them. Second, VU0 and VU1 have certain relationship shown in the diagram. This design extremely enhanced the flexibility of programming with Emotion Engine.
MIPS III Core connects with the FPU and VU0 directly with the dedicated buses. The pipeline of MIPS III is 6-stage. The MIPS III is the primary and controlling part, VU0 and the FPU are coprocessors to MIPS III. They compute the behavior and emotion of synthesis, physical calculations, etc For example, in a football game, the flying orbits of the ball, the wind effect, the friction between ball and the ground need to be calculated. At the same time, 21 player’s AI needs to be implemented (the last player is controlled by the user), the activity, the lineup, etc. After the calculation, MIPS III core sends out the display list to GIF.
VU1 has a dedicated 128-bit bus connected to GIF, which is the interface between GS (Graphics Synthesizer) and EE (Emotion Engine). VU1 can independently generate display list and send to GIF via its dedicated bus. Both of these relationships forms a kind of dedicate and flexible structure. The final goal of EE is generating display list and send to GS. The programmer can choose either programming two groups (MIPSIII + FPU + VU0 and VU1 + GIF) separately, send their display list in parallel, or programming purposely, making MIPS III + FPU + VU0 group as the “coprocessor” of VU1, for instance, generate physical and AI information then send to VU1, VU1 then produces corresponding display list. The diagram below shows the two programming methods.
(a) (b)
Figure 3.5: Two programming methods of Emotion Engine
MIPS ISA is an industry standard RISC ISA that found in applications almost everywhere. Sony’s MIPS III implementation is a 2-issue design that supports multimedia instruction set enhancements. It has
(1) 32, 128-bit general purpose registers
(2) 2, 64-bit integer ALUs
(3) 1 Branch Execution Unit
(4) 1 FPU coprocessor (COP1)
(5) 1 vector coprocessor (COP2)
What I really want to cover are two vector processors, VU0 and VU1. This is the main reason why PlayStation 2 is powerful.
VU0 is a 128-bit SIMD/VLIW design. The main job of VU0 is acting as the coprocessor of MIPS III. It is a powerful Floating-point co-processor; deal with the complex computation of emotion synthesis and physical calculation.
The instruction set of VU0 is just 32-bit MIPS COP instructions. But it is mixed with integer, FPU, and branch instructions. VIF is in charge of unpacking the floating-point data in the main bus to 4 * 32 words (w, x, y, z) for processing by FMAC. VU0 also possesses 32 128-bit floating-point registers and 16 16-bit integers.
VU0 is pretty strong. It is equipped with 4 FMACs, 1 FDIV, 1 LSU, 1 ALU and 1 random number generator. FMAC can do the Floating-Point Multiply Accumulate calculation and Minimum / Maximum in 1 cycle; FDIV can do the Floating-Point Divide in 7 cycles, Square Root in 7 cycles, and Inverse Square Root in 13 cycles. In fact, as the coprocessor of MIPS III, VU0 only uses its four FMACs. However, VU0 doesn’t have to stay in coprocessor mode all the time. It can operate in VLIW mode (as a MIPS III coprocessor, VU0 only takes 32-bit instructions. In VILW mode, the instruction can be extended to 64-bit long). By calling a micro-subroutine of VLIW code. In this case, it splits the 64-bit instruction it takes into two 32-bit MIPS COP2 instructions, and executes them in parallel, just like VU1.
VU1 has very similar architecture than VU0. The diagram below is the architecture of VU1 possesses all function that VU0 has, plus some enhancement. First, VU1 is a fully independent SIMD/VLIW processor and deal with geometry processing. Second, VU1 has stronger capability than VU0: it has a 16K bytes’ instruction memory and a 16K bytes’ data memory, which VU0 only has 4K bytes each. VU1 acts as the role of geometry processor; it burdens more instructions and data to be computed. Third, VU1 has three different paths to lead its way to GIF. It can transmit the display list from 128-bit main bus, just as VU0 + CPU + FPU do; or it can transmit via the direct 128-bit bus between its VIF and GIF; the last one is quite interesting, the path comes out from the lower execution unit (which I will talk about later) and goes directly to GIF. Three individual paths ensure two main problems of PC 3D game programming will not happen: first, the bottleneck of bus bandwidth; second, the simplex way of programming.
Figure 3.6: The architecture of VU1
VU1’s VIF does much more than that of VU0 does. The VIF takes and parses in which Sony called 3D display list. The 3D display list constructs of two types of data: the VU1 programming instructions (which goes to Instruction memory) and the data that the instruction deal with (which goes to Data memory). The instruction itself can be divided into two units, Upper instruction and Lower Instruction, which directly operate on two different execution units, Upper execution unit and Lower execution unit. The 64-bit VLIW instruction can be used to deal with two operations in parallel. Recall that VU0 possesses the same function but most of time it acts only as the coprocessor of MIPS III, this mode can only operate 32-bit SIMD instructions. Programmers also rarely ask VU0 to do the same thing what VU1 is good at.
3.3 Comparison
I strongly agree if you think Emotion Engine is more flexible than Pentium 4. The design of Emotion Engine is completely around the performance of 3D games. Two vector units, VU0 and VU1, contribute a lot for the game performance. Pentium 4 architecture is straight, you can trace the path of data from the very beginning, and soon you will be able to know how Pentium 4 works easily. For Emotion Engine, except you are the game designer, you will never know exactly.
I did not put too much digits in this section, the comparison of digits does not make sense at all. The comparison between two PC processors depends on digits, because they are the same kind and work in the same situation. For game consoles, without the burden of compatibility, the designers think a lot for the perfect cooperation. This would results in better performance, plus less cost. Unfortunately the programmers don’t think it is a good idea, it cost them quite a lot of time to investigate the processor to figure how it works.
4. BUSES AND CACHEING
4.1 PC Motherboard
While multimedia processing requires massive quantities of data to move rapidly throughout the system, the speed difference between processor and external devices is the main bottleneck of PC. Processor companies like Intel have put a lot of energy into getting the rest of the system components to run faster, even if other vendors provide these components. Improving the performance of motherboard is a good idea. Figure 4.1 is the main structure diagram of GIGABYTE GA-8TRX330-L Pentium 4 Motherboard. The bandwidth between Processor and system controller, main memory and system controller has reached to equally incredible 6.4GB/S. However, the latency of memory is still impossible to remove. Here I want to talk something about the processor caching mechanism.
In the present, motherboard’s FSB (Front Side Bus) frequency has over 800 megahertz. However, it is slower than that of Pentium 4, which is over 3 gigahertz. Processor runs at a multiple of the motherboard clock speed, and is closely coupled to a local SRAM cache (L1 cache). If processor requires data it will fist look at L1 cache. If it is in L1 cache, the processor read the data at a high speed and no need to do the further search. If it is not, sadly processor has to slow down to the motherboard clock speed (what a drastic brake!) and contact to system controller. System controller will check if L2 cache has the required data. If has, the data is passed to processor. If not, processor has to access the DRAM, which is a relatively slow transfer.
4.2 About PlayStation 2’s buses and caching.
Recall Figure 2.2, we can see 32-bit interfaces between processor and I/O Processor, main memory and I/O Processor, which can achieve 3.2GB/S bus speed. Although slower than Pentium 4, Emotion Engine itself is relatively slow as well, 300MHz MIPS III processor. However, PlayStation 2’s 32-bit interface, 10-channel DMAC, 128-bit internal bus, and small cache memory group to an incredible caching condition. Any data necessary can be store or download in time. This strategy takes 90% of DMA capability. It makes the latency which main memory generates is acceptable for Emotion Engine.
4.3 Comparison
This time we can talk about digits some more. Let’s see a Pentium 4’s cache memory
L1 trace cache: 150K
L1 data memory: 16K
L2 memory: 256K ~ 2MB total: 422~2204K
Let’s see PlayStation 2 next
VU0 data memory: 4K
VU0 instruction memory 4K
VU1 data memory 16K
VU1 instruction memory 16K
MIPS III data memory: 2-way 8K
MIPS III instruction memory: 2-way 16K total: 64K
Contrast to Pentium 4, the cache memory of PlayStation 2 is too small. Its capability is indeed ‘weak’ in the present. Pentium 4 is able to hold more data and does more computations in parallel. However, PC architecture hasn’t been improved along with the processor. No matter how Pentium 4 fast is, present bus architecture is never going to perform Pentium 4 100% capability. PlayStation 2 achieves a nearly perfect structure and mechanism, which helps it exert as much as it can (or maybe I should say because Pentium 4 is too fast, the memory speed is relatively too slow). Besides, it remarkably low down the cost, you can afford a PlayStation 2 plus a controller with the same price of a single Pentium 4 chip.
5. VIDEO PERFORMANCE
5.1 Comparison of performance between PC and PlayStation 2
Figure 5.1 Need for Speed Most Wanted (PlayStation 2) 2006 by EA GAMES
PlayStation 2 Graphics Synthesizer (GS)
· 150 MHz (147.456 MHz)
· 16 Pixel Pipelines
· 2.4 Gigapixels per Second (no texture)
· 1.2 Gigatexels per Second
· Point, Bilinear, Trilinear, Anisotropic Mip-Map Filtering
· Perspective-Correct Texture Mapping
· Bump Mapping
· Environment Mapping
· 32-bit Color (RGBA)
· 32-bit Z Buffer
· 4MB Multiported Embedded DRAM
· 38.4 Gigabytes per Second eDRAM Bandwidth (19.2 GB/s in each direction)
· 9.6 Gigabytes per Second eDRAM Texture Bandwidth
· 150 Million Particles per Second
· Polygon Drawing Rate:
· 75 Million Polygons per Second (small polygon)
· 50 Million Polygons per Second (48-pixel quad with Z and Alpha)
· 30 Million Polygons per Second (50-pixel triangle with Z and Alpha)
· 25 Million Polygons per Second (48-pixel quad with Z, Alpha, and Texture)
· 18.75 Million Sprites per Second (8 x 8 pixel sprites)
Figure 5.2 Needs for Speed Most Wanted (PC) 2006 by EA GAMES
PC Graphics Chip RADEON X300 SE PCI Express
· Bus type PCI Express (x16 lanes)
· Maximum vertical refresh rate 85 Hz
· Display support Integrated 400 MHz RAMDAC
· Display max resolution 2048 x 1536
· Board configuration
· 64 MB frame buffer
· Graphics Chip RADEON X300 SE PCI Express
· Core clock 325 MHz
· Memory clock 200 MHz
· Frame buffer 64 MB DDR
· Memory I/O 64 bit
· Memory Configuration 4 pieces 8Mx16 DDR
· Board configuration
· 128 MB frame buffer
· Specification Description
· Graphics Chip RADEON X300 SE PCI Express
· Core clock 325 MHz
· Memory clock 200 MHz
· Frame buffer 128 MB DDR
· Memory I/O 64 bit
· Memory Configuration 4 pieces 16M x 16 DDR
· Memory type DDR1
· Memory 128 MB
· Operating systems support Windows? 2000, Windows XP, Linux XFree86 and X.Org.
· Core power 16 W (Max board power)
From the data we can see. GS is too weak, contrast to low-level video card of PC. However, the performance of PlayStation is not too that bad. I don’t want to analyze data here. What I am interested to discuss is about the performance itself.
Let’s see Figure 5.2 in detail. Texture is very clear and exquisite. This is what big video memory offers. The tree leaves in distance need a lot of polygons to build. The video card itself is low-level; possess no special effect for the game rendering. No refection and other sparking place can be found. In general, the game performance is only ok.
Figure 5.3 PC game rendering related architecture
Now let’s see PlayStation 2’s performance, which is in Figure 5.1. We see a good image. If you look the image in detail, you may found the mountain beside the road is weird: the shape of mountain is not that nature, like some spectrum graphics. This is done by VU1, which draws the Bezile, build 3D graphic based on the curve. Although not good enough, how many people will actually notice that when dashing at over 200km/h with his virtual car? VU1 does a lot of job like that and it could generate a lot of shapes without too many polygons to build. Now let’s see the car, the refection of cars is true reflection (which means it is not fake texture pretended to be the reflection), we can distinguish the mountains behind, however very blur. The whole image is not as clear as Figure 5.2 because the limitation of GS’s video memory (4M). However, this image is good enough for most PlayStation 2 players.
5.2 Some more about the video performance
Although Pentium 4 has enough capability to process image real time, the way of implementing games is still no change. The video card read the content of texture into its local memory card, the processor only deal with the data and instructions. After the calculation, the processor stores the display list (a list, recorded with the details of all elements, for instance, one single polygon’s position and texture code) back to the main memory. Video card then access the lists and process them, generate picture, transfer to analogue signal and output. Most special effects depend on the video card. So, no good card, no good performance.
Let’s see figure 2.2, we will see there is no direct connection between GS and main memory. At the PC’s point of view, 4MB video-memory is not enough to show a single frame with 1024*768 pixels. How is PlayStation 2 able to perform like that? The answer is bus. So we come back to section 4 again. The specialized display list (which Sony called 3D display list) is directly sent to GS, along with the required texture. GS has a huge bandwidth (3.8GB/S), its local memory can work as fast as it is (maybe it is more suitable if we call the memory as cache). GS itself supports only a few special effects. However, this situation can be improved by the simulation calculations finished by Emotion Engine… Again, PlayStation 2’s elegant design makes its all components work as a whole.
6. CONCLUSION
Hopefully you have got the idea of how PlayStation 2 and PC architecture differ. Let’s go through it again.
General architecture. PCs are more complex to read, but easier to implement. The system bus directly manages all devices inter-communications. PlayStation 2’s is easy to read, but much harder to implement. The communication between each other is convenient.
Processor architecture. The trend of processor architecture design is meeting the requirement of multimedia. Both PC’s Pentium 4 and PlayStation 2’s Emotion Engine are qualified to run multimedia applications efficiently. Pentium 4 is much stronger than Emotion Engine, but the architecture is very ‘straight’ and has to do extra jobs of translating instructions to be compatible with current applications. Emotion Engine has no this burden, the specialized 3D game performance design make it easy to handle complex calculation jobs with relatively low clock rate.
Buses and Caching. PC has classic bottlenecks and there is no way to overcome it. Current PC buses and cache has improved a lot by increasing the bandwidth and cache volumes, but the latency of main memory cannot be solved. PlayStation 2 works on nearly full load; perfect coordination between components is almost achieved.
Video. Although Pentium 4 can run perfectly on multimedia applications, the PC game developers don’t think so. They still stick to push the texture and other data into the video memory for one time. The awkward situation is, when you want to update your PC for high requirement games, the first component came into your mind must be the video card but processor. It is impossible to ask PlayStation 2 players to update. Emotion Engine is in charge of many jobs what PC’s video card does. The good condition of data transmission makes it is possible to implement ‘true’ multimedia processing in games, that is treating game image as media streams, no need to supply huge data storage to hold that.
Purpose: PC’s general—purpose VS PlayStation 2’s 3D game rendering purpose.
PlayStation 2 is 6 years old now. According to the principle of game console life expectance, it is time to hand the baton to its offspring, PlayStation 3. It is a successful game console of Sony. Contrast to PC, it is too weird, but all its weird compositions seemed so reasonable as well. PC’s architecture is classical; all components have its space for upgrade. Maybe it is too early to say the architecture should evolve. However, PlayStation 2’s architecture gave us a good lesson. If you only were interested in games, you should buy a PlayStation series, not a PC. At least, you need not worry about upgrading your components for the next game. Special architecture can make it becomes the best in specialized region.
7. REFERENCE
[1] William Buchanan and Austin Wilson, “Advanced PC Architecture”, ISBN: 0 201 39858 3
[2] John L. Hennessy and David A. Patterson, “Computer Architecture—A Quantitative Approach”, ISBN: 1 55890 724 2
[3] Keith Diefendorff and Pradeep K. Dubey, "How Multimedia Workloads Will Change Processor Design." Computer, September 1997
[4] Jon "Hannibal" Stokes Sound and Vision: A Technical Overview of the Emotion Engine Wednesday, February 16, 2000
[5] K. Kutaragi et al "A Micro Processor with a 128b CPU, 10 Floating-Point MACs, 4 Floating-Point Dividers, and an MPEG2 Decoder," ISSCC (Int’l Solid-State Circuits Conf.) Digest of Tech. Papers,Feb. 1999, pp. 256-257.
[6] Jon "Hannibal" Stokes “SIMD architectures”
arstechnica.com/articles/paedia/cpu/simd.ars
[7] “Graphics Synthesizer – Features and General Specifications”
arstechnica.com/cpu/1q99/playstation2-gfx.html
[8] “The Technology behind PlayStation 2”
ieee.org.uk/docs/sony.pdf
[9] Michael Karbo,“PC Architecture“
karbosguide.com/books/pcarchitecture/start.htm
[10] Gabriel Torres, “Inside Pentium 4 Architecture”
hardwaresecrets.com/article/235/1
[11] Thomas Pabst, “Intel’s new Pentium 4 Architecture”
tomshardware.co.uk/2000/11/20/intel/
[12] KuaiLeDaYuShu, “Video Card Parameters Analysis”
blog.yesky.com/Blog/joyelm/archive/2005/07/30/253803.html
[13]Howstuffworks “How PlayStation 2 Works”
entertainment.howstuffworks.com/ps21.htm
[14] Craig Steffen “Scientific Computation on PlayStation 2 home page”
國外專家對學(xué)生學(xué)習(xí)成功的因素通過調(diào)查得出了如下結(jié)論:在學(xué)生學(xué)習(xí)成功的因素中,良好的學(xué)習(xí)習(xí)慣占30%,興趣占25%,智力占15%,家庭占5%,其他因素占25%。高效英語復(fù)習(xí)課堂教學(xué)所要求的核心價值取向就是變學(xué)生被動學(xué)習(xí)為自主學(xué)習(xí),因為只有自我謀劃,自我激勵,自我探究,才可能有高效。要想高度自主復(fù)習(xí)必須要成良好的學(xué)習(xí)習(xí)慣??倧?fù)習(xí)階段依然要強化下列學(xué)習(xí)習(xí)慣:課前預(yù)習(xí)和準(zhǔn)備習(xí)慣;上課的習(xí)慣;復(fù)習(xí)的習(xí)慣;作業(yè)的習(xí)慣;聽、說、讀和寫的習(xí)慣。課外自主學(xué)習(xí)的習(xí)慣。教師要嚴(yán)格要求、反復(fù)強化,讓學(xué)生不斷實踐,采用良好的學(xué)習(xí)方法和策略,讓良好的復(fù)習(xí)習(xí)慣像鳥的翅膀一樣幫助學(xué)生高效地自主復(fù)習(xí)好英語。
二、依綱扣本,中考采用三階段四板塊循環(huán)滾動的復(fù)習(xí)模式
根據(jù)《英語課程標(biāo)準(zhǔn)》和《英語中考指南》,三階段指復(fù)習(xí)時間分為三個階段,四板塊指單元梳理板塊、專項訓(xùn)練板塊、綜合訓(xùn)練板塊和聽、說、讀、寫能力訓(xùn)練板塊,它們互相融合互相促進,使知識和能力水平不斷循環(huán)提升。第一階段單元梳理板塊主要是梳理初中階段所學(xué)的全部的語言知識。牛津英語教材按照話題———結(jié)構(gòu)———功能———情景———任務(wù)體系以單元形式編排,所以梳理語言知識以單元作板塊來整體復(fù)習(xí)較合理。按教材順序以話題和任務(wù)為主線,以及他們和功能、語法項目的關(guān)系提前分門別類的梳理,歸納四會單詞、重點詞組、重點句型、語法和課本對話等知識,匯編成講義發(fā)給學(xué)生,使學(xué)生腦子中有清晰知識體系網(wǎng)絡(luò)圖。第二階段專項訓(xùn)練復(fù)習(xí)是對針對名詞、冠詞、非謂語動詞、并列句和復(fù)合句等作專項的訓(xùn)練。此階段的任務(wù)主要通過語法線來鞏固、深化課本英語知識。第三階段綜合訓(xùn)練板塊任務(wù)主要是通過專項題型和模擬測試來全面培養(yǎng)學(xué)生綜合應(yīng)試能力水平。綜合訓(xùn)練也可從英語總復(fù)習(xí)一開始時就要有計劃安排,如一個星期做一套完整的綜合試卷或?qū)m楊},以便培養(yǎng)整體復(fù)習(xí)英語的意識。聽、說、讀、寫能力訓(xùn)練板塊始終貫穿在整個三個階段里,要反復(fù)有層次地訓(xùn)練,每周要固定時間,保證訓(xùn)練次數(shù)和質(zhì)量,同時做好點撥和評析,傳授各種方法和技巧,使知識和能力形成互補,提高復(fù)習(xí)效率。
三、分層指導(dǎo),在統(tǒng)一練習(xí)同時重視分層的作業(yè)布置
英語總復(fù)習(xí)階段學(xué)生的英語水平已經(jīng)參差不齊,根據(jù)知識掌握程度和學(xué)習(xí)品質(zhì)可以分成優(yōu)秀生,中等生和后進生,其中后進生的英語水平還不如七年級學(xué)生的英語水平。那么教師既不能放棄某些學(xué)生,也不能一個層次要求所有的學(xué)生。只有根據(jù)學(xué)生個體的學(xué)情分層指導(dǎo)和要求才為上策。首先英語語言知識點分層要求可從教材自身出發(fā),對于每個單元,細(xì)到梳理知識點,在此基礎(chǔ)上進行“淘金”活動,將知識點梳理成金字塔形,將不同的知識點對應(yīng)于不同層次的學(xué)生,分層次分解知識點,對相應(yīng)層次的學(xué)生提出相應(yīng)的需求。其次要引進競爭機制來分層次優(yōu)化,根據(jù)每位學(xué)生的能力,制訂標(biāo)準(zhǔn)分,進行獎勵,使他們個個有對手,人人有復(fù)習(xí)目標(biāo),人人有危機感,把學(xué)習(xí)積極性最大限度地調(diào)動起來。最后對于后進生特別要多進行情感關(guān)懷,根據(jù)學(xué)生不同情況幫助他們找出名自的薄弱環(huán)節(jié),采取人盯人辦法,一方面進行面對面輔導(dǎo);另一方面認(rèn)真面批他們的練習(xí)和試卷,分析他們的錯誤原因,幫助他們寫出正確答案。這樣每個層次的學(xué)生都相應(yīng)到達應(yīng)有的復(fù)習(xí)水平,提高了復(fù)習(xí)效率。
四、重視復(fù)習(xí)反饋、培養(yǎng)自主復(fù)習(xí)評價能力
關(guān)鍵詞:科技英語論文寫作;定義;敘述
中圖分類號:H315 文獻標(biāo)識碼:A
文章的主體是科技論文的核心部分,是主題思想的展開和論述。作者可根據(jù)需要在文章中加小標(biāo)題,將主體內(nèi)容分為幾個部分進行論述??萍颊撐牡挠⑽膶懽魍ǔ0衙慷蔚闹黧w句(Topic Sentence)放在段落的第一句,全段圍繞主體句論述,定義與敘述是科技論文寫作中又一種常用的寫作方法。
一、定義(Definition)
(一)Introduction
When making a hypothesis(假說)or other statement, scientists must make sure that they will beunderstood by other researchers. Misunderstandings occur when there are different concepts of what is being discussed.
A definition answers the question, “What is it?” Sometimes a definition is necessary because a word or concept has more than one meaning. For example, whether carbon is a metal or nonmetal depends on how you define carbon. At other times, a definition is required because a term is being used in a special way. For example, physicists use the terms work and energy in ways that are more specific than their common meanings. A definition should be complete enough to include all the items in the category yet narrow enough to eliminate items that do not belong. The Greek philosopher Plato once defined man as a two-legged creature that has no feathers. The problem with Plato's definition was that it did not distinguish a man from other two-legged creatures without feathers. Communication between researchers is dependent on precise definitions of substances, concepts, processes, and ideas.
Greek philosopher Plato 希臘哲學(xué)家帕拉圖
(二)Sentence patterns
Sentence pattern 1:
An astronomer is a scientist whostudies the universe.
A barometeris an instrumentthat measures air pressure.
Conductionis a process by which heat is transferred.
A laboratoryis a place whereexperiments are performed.
Physicsis the study ofmatter and energy.
A volt is a unitfor measuring electrical pressure.
Sentence pattern 2:
Mercuryisa liquidmetal.
Asbestosis a fire-resistantmineral.
A dinosaurisa prehistoric reptile.
A monkeyis a small, long -tailedprimate.
(三)Application Examples
be 是
mean 意思是,意味著,意指
denote 表示,指
imply 意思是,意味著
be named 命名為,被稱為
Examples:
1. Printers are output devices.
打印機是輸出設(shè)備。
2. Multiprogramming means the existence of many programs in different parts of main memory at the same time.
多道程序意味著在主存儲器的不同部分同時存在著多個程序。
3. Data denotes a collection of facts that can serve as operands to computer program.
數(shù)據(jù)是指可作為計算機程序操作對象的集合。
4. A “system” implies a good mixture of integrated parts working together to form useful whole.
“系統(tǒng)”意指將協(xié)同工作各部分適當(dāng)?shù)鼐C合而成的一個有效的整體。
5. The first digital computer built in 1946 at the University of Pennsylvania was named ENIAC.
第一臺計算機是1946年在賓夕法尼亞大學(xué)建造的,命名為ENIAC。
二、敘述(Describing)
(一)Introduction
A description serves to introduce a scientist's view of the world. It may describe conditions, results of an experiment, chemical changes, physical movements, or what is seen through a telescope or microscope. A description may also tell the characteristics or distinctive features of an object―how it look, sounds, tastes, smells, works, or is produced.
The nature of something can be explained by describing it. For example, the concept of an atom is difficult to grasp from a definition alone, but a description of its appearance, detailing its structure and function, makes it easier to visualize.
(二)Sentence patterns
The Nile River is 4,145 miles long.
Mount Everest is 8,848 meters high.
The Dead Sea is 11 miles wide.
The Nile River has a length 4,145 miles.
The Sun has a surface temperature of 11,000°F.
The Grand Canyon has a depth of 5,500 feet.
The color of iodine is purplish black.
The texture of sand is rough and granular.
The orbits of planets are elliptical.
Pluto is relatively small.
Blue stars are extremely hot.
Copper salts are slightly blue in aqueous solutions.
(三)Application Examples
be是
be considered (to be) 被認(rèn)為是,被看作
be known as 被稱為是,被認(rèn)為是,即
be referred to as 稱為,叫做
be thought of as 被認(rèn)為是
be regarded as 被認(rèn)為是
Examples:
1.This ability to allow interrupts to interrupt previous interrupts service routines safely are referred to as nested interrupts.
允許某些中斷去中斷先前的中斷服務(wù)程序,并能正確運行的能力稱為嵌套中斷。
2.One of the most important characteristics of a computer is its capability of storing information in its memory long enough to process it.
計算機最重要的特性之一就是具有這樣一種能力,即在它的存儲器中保存信息時間長到足以對這些信息進行處理。
3.In the majority of applications the computer's capability to store and access large amounts of information plays the dominant part and is considered to be its primary characteristic.
在大部分的應(yīng)用中,計算機能夠存儲和訪問大量的信息這一特性,起了關(guān)鍵的作用,并被看成是計算機的主要特點。
除了定義 (Definition) 與敘述(Describing)的寫作方法以外,科技英語論文常用的寫作方法還有:比較(Comparing)、因果(Cause and Effect)、假設(shè)(Hypothesizing)、證明(Giving Evidence)、實驗(Experiment)、計算(Calculating)、報告(Reporting)、預(yù)測(Predicting)等。
1、提高中國文化素養(yǎng)符合多元化的人才需求
當(dāng)今的就業(yè)市場需要多元化的外語人才,對于英語相關(guān)專業(yè)而言,社會上普遍需求的是英語與其他專業(yè)緊密結(jié)合的復(fù)合應(yīng)用型人才,商務(wù)英語專業(yè)在此應(yīng)運而生,培養(yǎng)能用英語進行諸如商務(wù)、旅游、物流、外貿(mào)、文秘、會展等商貿(mào)活動的復(fù)合型人才。在兩種文化交流的過程中,決定溝通質(zhì)量的是代表中國形象的學(xué)生的中國文化素養(yǎng)和自身的英語水平。
2、諳熟中國文化可以助力學(xué)生的英語學(xué)習(xí)
在英語業(yè)已成為世界語的今天,商務(wù)英語專業(yè)作為英語專業(yè)的一個分支,長期以來英語學(xué)習(xí)過程中都強調(diào)英語語言知識的輸入,強調(diào)英語與商務(wù)的結(jié)合,注重發(fā)音標(biāo)準(zhǔn)、表達流利、語法運用得體等,其重視程度甚至遠(yuǎn)遠(yuǎn)勝于對中國文化涵養(yǎng)的關(guān)注。而語言內(nèi)在的思想性被忽略甚至被淹沒,因此外語學(xué)習(xí)過程中母語的正遷移作用很難發(fā)揮出來。換言之,倘若學(xué)生憑借自己較高的中國文化涵養(yǎng)來進行英語學(xué)習(xí),聽說讀寫的學(xué)習(xí)障礙將會大大降低,英漢雙語的相互切換也會迎刃而解。
3、熟悉中國文化有利于傳播優(yōu)秀的中國文化
英語學(xué)習(xí)的終極目標(biāo)不僅是實現(xiàn)成功的跨文化交際,更應(yīng)該是把優(yōu)秀的母語文化即中國文化傳播到世界。承載著幾千年文明的中國,其優(yōu)秀精華的文化應(yīng)該在英語學(xué)習(xí)過程中與英語這門語言站在文化對等的位置上對話。在對外漢語教學(xué)日益盛行的今天,高校商務(wù)英語專業(yè)的學(xué)生也應(yīng)該盡己之力通曉中國文化及其英文講解方法思路,在商務(wù)活動中使世界通過我們更加了解中國璀璨文化。
二、商務(wù)英語專業(yè)中國文化教學(xué)現(xiàn)狀
1、課程設(shè)置對于中國文化的缺失
2000年南京大學(xué)的從叢教授在《“中國文化失語”:我國英語教育的缺陷》中提到“許多中國青年學(xué)者雖然具有相當(dāng)程度的英語水平,但是在與西方人交往的過程中,始終顯示不出來自古文化大國的學(xué)者所應(yīng)具有的深厚文化素養(yǎng)和獨立的文化人格……有些博士生有較高的基礎(chǔ)英語水平,也有較高的中國文化修養(yǎng),但是一旦進入英語交流語境,便會立即呈現(xiàn)出‘中國文化失語癥’”。商務(wù)英語專業(yè)學(xué)生用英語表達母語文化中出現(xiàn)“失語”現(xiàn)象,是因為在英語教學(xué)中獲得用英語準(zhǔn)確表達中國文化知識的不足。例如,介紹魯迅先生故居的一段話中很多學(xué)生把“故居”一詞翻譯成“oldhouse”,幾乎沒有學(xué)生知道地道的說法是“formerresidence”。同時,很多高校的商務(wù)英語專業(yè)課程設(shè)置上注重實用性,講求英語語言知識與商務(wù)知識的結(jié)合。作為只有36學(xué)時的選修課,課時有限,任務(wù)緊張,很多學(xué)生為完成任務(wù)而完成任務(wù),沒有真正重視中國文化的學(xué)習(xí)與提高。
2、日常教學(xué)頻頻出現(xiàn)中國文化缺失
過度重視英語及英語文化而忽視中國文化導(dǎo)致英語文化的內(nèi)化在商務(wù)英語專業(yè)學(xué)生中越來越深入,許多學(xué)生成為英語通、西方文化通,俚語通,而中國傳統(tǒng)文化成為許多學(xué)生的認(rèn)知荒漠:課堂上問及學(xué)生“杞人憂天”、“門泊東吳萬里船”等詞句無法用英語解釋出來。今天的四六級考試中增加了段落翻譯項目,而且頻頻涉及到中國傳統(tǒng)文化與當(dāng)今中國經(jīng)濟社會發(fā)展。但是學(xué)生對于中國文化的重視程度依然不夠。不要說“四合院”“、茶馬古道”“、敦煌石窟”、就是“少林功夫”、“吉祥文化”、“筷子”等很多中國文化常見語的譯法學(xué)生都聞所未聞、瞠目結(jié)舌。比如,在介紹孔子的一段話的翻譯中,很多學(xué)生根本不知道孔子(Confucius)、儒學(xué)(theRuSchool)、孔圣人(MasterKung)。學(xué)生英語水平雖然大幅提高,母語文化卻丟之腦后,這不得不說是失衡的英語教育造就的悲哀。
3、學(xué)生測評體系對中國文化的忽視
目前高校商務(wù)英語專業(yè)對學(xué)生的測驗評價體系依然比較傳統(tǒng)地注重學(xué)生的聽、說、讀、寫、譯等能力。聽力考試材料來源基本上是BEC、BBC、VOA、CNN,文化背景都是清一色的西方英語國家日常生活與商務(wù)活動,很少涉及中國文化;口語考試依然一如既往地關(guān)注發(fā)音標(biāo)準(zhǔn)、表達流利、地道清晰、商務(wù)術(shù)語準(zhǔn)確等因素;閱讀、寫作、翻譯考試也多是傳統(tǒng)的名詞解釋、簡答題、論述題、案例分析、計算題等,中國文化元素依然難得一見。
三、商務(wù)英語專業(yè)中國文化教學(xué)強化對策
全世界早已掀起了“漢語熱”:孔子學(xué)院的設(shè)立、漢語等級考試的興起、對外漢語教學(xué)人才的稀缺都足以為證。商務(wù)英語專業(yè)作為以英語語言為橋梁、深化英語與商務(wù)專業(yè)知識相銜接的專業(yè),學(xué)生內(nèi)在的中國文化素養(yǎng)亟待提高??梢詮囊韵聨讉€方面著手:
1、課程設(shè)置對于中國文化可以有所傾斜
商務(wù)英語專業(yè)在課程設(shè)置方面除了大一全校開設(shè)的大學(xué)語文之外,可以考慮自己開設(shè)現(xiàn)代漢語及漢語語言學(xué)等課程。畢竟商務(wù)英語專業(yè)的學(xué)生在學(xué)習(xí)英語語言學(xué)的過程中一定會不自覺地發(fā)問:為什么多年的學(xué)習(xí)生涯中學(xué)校從未開設(shè)過漢語語言學(xué)呢?很多學(xué)生會盲目認(rèn)為英語語言學(xué)在重要性上一定勝過漢語語言學(xué),因此造成了學(xué)生語言學(xué)習(xí)過程中的顧此而失彼。條件允許的話,高校的商務(wù)英語專業(yè)還可以鼓勵專業(yè)教師開設(shè)與中國相關(guān)的公共選修課:英文講解的人類學(xué)、社會學(xué)、心理學(xué)、中國歷史、中國文化通史、古代詩詞及名著賞析、對外漢語教學(xué)等課程,應(yīng)體現(xiàn)哲學(xué)、歷史、宗教、社會、教育、文化、藝術(shù)等中國文化內(nèi)容,從而提高學(xué)生的中國文化素養(yǎng)和母語人文涵養(yǎng),給學(xué)生創(chuàng)造良好的中國文化學(xué)習(xí)氛圍。通過這些課程,開闊學(xué)生視野,使學(xué)生更加熟悉中國文化。
2、日常教學(xué)將中國文化貫穿始終
商務(wù)英語專業(yè)教師應(yīng)該自覺提高自身中國文化修養(yǎng),深入學(xué)習(xí)中國文化尤其是中國傳統(tǒng)文化,并在日常教學(xué)中成功實現(xiàn)中國文化的漢英切換,注重中西文化對比、中國文化知識的傳播和對外漢語宣傳能力的提升。例如,教師在課堂上講授美國文化的五大象征時,可以啟發(fā)學(xué)生用英語討論中國文化的象征,學(xué)生熱烈討論中會涉及長城、孔子、筷子、菜系、絲綢之路、天安門廣場、故宮等許多中華文化象征,啟發(fā)學(xué)生盡可能詳盡地用英語表述中國元素。同時,教師在備課過程中應(yīng)盡可能多地熟悉中國特有文化的英文譯法,多多積累中國文化各種英文介紹,例如,可以參考作品中涉及大量中國文化元素的林語堂、錢鐘書和賽珍珠的作品及英文版的《中國文化》等書籍。
3、完善學(xué)生測評體系,強調(diào)中國文化
商務(wù)英語專業(yè)的學(xué)生測評不僅應(yīng)該單獨設(shè)置中國文化課程的考核,還應(yīng)在綜合英語、精讀等課程的測試中體現(xiàn)中國元素,加入相關(guān)檢測試題,學(xué)生在備考過程中系統(tǒng)復(fù)習(xí),不斷強化,中國文化素養(yǎng)必然會得到提高。在學(xué)生的聽、說、讀、寫、譯等能力的考試中盡可能選取與中國文化相關(guān)的資料。在學(xué)生的各類測試中增加中西文化比較,根據(jù)主題與作者觀點,適當(dāng)進行廣泛的跨文化對比分析,使學(xué)生對中西方文化的特點有清楚的認(rèn)識,能夠深刻地意識到祖國傳統(tǒng)文化的價值,通過系統(tǒng)教學(xué)、講解、反復(fù)訓(xùn)練、復(fù)習(xí)、檢測等環(huán)節(jié)實現(xiàn)學(xué)生熟練用英文較準(zhǔn)確表達中國文化相關(guān)內(nèi)容。
四、結(jié)語
按教學(xué)大綱要求,初中英語需要加強聽力訓(xùn)練,但在我國初中英語教學(xué)中,存在了幾個重要的誤區(qū),其主要表現(xiàn)為以下幾個方面:第一,進行教學(xué)時,許多老師采用集體中突擊的形式進行教學(xué),沒有重視到日常教學(xué)中的積累。注重集中訓(xùn)練,忽視長期積累。第二,發(fā)現(xiàn)學(xué)生在學(xué)習(xí)中存在的問題,沒有進行及時給予糾正。第三,聽力教學(xué)過程中,方法不正確,簡單的把聽力訓(xùn)練當(dāng)作聽力測試。第四,沒有重點的把學(xué)習(xí)英語的幾大關(guān)鍵進行結(jié)合,把聽、讀、說、寫進行了分離式教學(xué)。這些錯誤的教學(xué)形式很大程度上,影響到了學(xué)生在進行聽力訓(xùn)練的進度與質(zhì)量。如何解決這些存在的問題,成為了目前教學(xué)的關(guān)鍵。
筆者認(rèn)為,可以針對本校學(xué)生學(xué)習(xí)的狀況進行調(diào)整,以達到解決這些錯誤教學(xué)方式的目的。首先,作為英語聽力訓(xùn)練,它是和日常教學(xué)過程中的英語聽力相輔相成的,是一個需要長期積累的過程,這就需要英語老師在進行教學(xué)時,用英語進行教學(xué),這是一個非常行之有效的提升學(xué)生聽力的教學(xué)方式;其次,在教材中有相關(guān)的配套聽力題,需要根據(jù)教學(xué)進度同時進行,然后隨著進度的開展進行多樣的聽力專項訓(xùn)練;再次,進行英語教學(xué)時,一定要遵循先聽后說、先說后讀、先讀后寫的基本教學(xué)原則,這樣可以非常有效地把教學(xué)與聽力訓(xùn)練相結(jié)合,達到聽力訓(xùn)練的長期積累的目的。通過這些解決的措施,可以解決目前初中英語聽力訓(xùn)練的錯誤形式。
二、初中英語聽力訓(xùn)練需多樣化
在教學(xué)過程中,如果只是采用單一形式對學(xué)生進行聽力訓(xùn)練,會讓許多學(xué)生產(chǎn)生厭學(xué)情緒,這時就需要老師采用多樣化的教學(xué)形式進行學(xué)生的英語聽力訓(xùn)練,如聽英文歌曲帶動學(xué)生聽詞猜詞的興趣,或者以英語猜迷的形式提升學(xué)生的參與積極性等方式進行訓(xùn)練。目的在于提升學(xué)生對英語的興趣,解除他們心中對英語聽力的恐懼心理,有效地激發(fā)出學(xué)生的參與性。例如,可以設(shè)定一個情景,也就是通常所說的情景式教學(xué),然后通過互動交流,提升學(xué)生對聽力的興趣,通過以下的對話形式,既簡單又能讓學(xué)生有很大的參與感,讓學(xué)生容易地去完成任務(wù),提升他們對聽力訓(xùn)練的信心,又能很直觀地引導(dǎo)學(xué)生對問題的思考。
三、運用技巧進行教學(xué),提升學(xué)生聽力
(一)引導(dǎo)學(xué)生進行推理想要學(xué)好英語,就需要更好地去理解所聽到的英語的內(nèi)容,這個過程就需要學(xué)生進行合理地聽到內(nèi)容進行推理與判斷。這種形式,不僅能提升學(xué)生的主觀能動性,還能大大增強學(xué)生對問題的推理,拓展學(xué)生的思維與判斷能力。例如,當(dāng)訓(xùn)練聽力時,學(xué)生在聽錄音前,需要先對習(xí)題進行瀏覽,大概了解整個對話的情景、人物包括這段習(xí)題中對話的大概意思,當(dāng)開始聽錄音時,對之前所瀏覽習(xí)題后得到的信息進行對比,非常有效地提高了判斷的準(zhǔn)確度。
(二)好記性不如爛筆頭,抓住重點跳過難點在進行聽力訓(xùn)練過程中,學(xué)生們都是處于一個高度緊張的狀態(tài),那么可以在邊聽的過程中,從聽力材料中提取出關(guān)鍵信息,把一些相關(guān)的數(shù)學(xué)、人物、情景做上筆記,可以用自己所習(xí)慣的方式進行關(guān)鍵信息的記錄,抓住重點,這些關(guān)鍵信息用代號或者是縮寫的形式記錄下來,有效地提高了對習(xí)題的判斷。在進行聽力訓(xùn)練過程中,肯定會出現(xiàn)一些生詞。可以簡單做一下記錄后,直接跳過這些難點,不要在這些生詞上進行過多的思考,以免遺漏更多的有價值的信息,通過這樣長期的訓(xùn)練,可以有效地避免學(xué)生的心理壓力,加強學(xué)生對聽力的處理技巧。
4. 摘要 英文摘要一般為150-180個實詞,中文摘要一般在300字以內(nèi),中英文摘要應(yīng)基本一致.其內(nèi)容應(yīng)包括研究目的,方法,結(jié)果,結(jié)論等,禁用"本文","作者","This paper"等作主語.詳見"科技期刊文章摘要的寫作要求".
5. 關(guān)鍵詞 每篇文章可選3~8個能反映文章主要內(nèi)容的單詞,詞組或術(shù)語.英文關(guān)鍵詞應(yīng)與中文關(guān)鍵詞相對應(yīng).
6.中圖分類號 請查《中國圖書館分類法》.
7. 正文 正文篇幅一般希望控制在成書5頁(記空格,圖表占位)以內(nèi).內(nèi)容力求有創(chuàng)新,論證嚴(yán)謹(jǐn),語句通順,文字精煉.
8.文中正體,斜體,黑體字符的用法:
⑴斜體.變量名稱用斜體單字母表示;下標(biāo)若是由變量轉(zhuǎn)化來的則用斜體;坐標(biāo)軸(如x,y)和變量(如i,j)用斜體.
⑵正體.下標(biāo)由文字轉(zhuǎn)化來的說明性字符用正體;單位,詞頭用正體,如nm,pF等;幾個特殊常量用正體,如e,i,π等.
⑶黑體.矩陣,矢量名稱用黑體表示.
9.圖形要求
圖中所有線條,文字必須用黑色繪制;用線形或標(biāo)識符區(qū)分;不得有背景;
圖中線條須清晰,均勻,刻度線向內(nèi)側(cè)畫,并且間隔應(yīng)均勻;
圖中坐標(biāo)線粗0.5磅,曲線寬度為坐標(biāo)線寬度的3倍;
10.表格要求 表格采用三線表,表頭中使用物理量符號/單位,如下例:
x/cm
I/mA
v/(m·s-1)
h/m
p/MPa
10
30
2.5
4
110
11.參考文獻 來稿引用他人觀點與材料,須將參考文獻按正文中出現(xiàn)的先后次序列于文后,文中須在引用處右上角加注"「序號".中文參考文獻必須列出相應(yīng)的英文,并在后面加注"(in Chinese)".引文作者姓名均為姓前名后,最多標(biāo)3名,余下用"et al."代表.
著錄格式為:(按不同析出物分類說明)
「連續(xù)出版物 主要作者.題名「J .刊名,年,卷(期):起止頁碼.
「專著 主要作者.書名「M .出版地(城市名):出版者,出版年.起止頁碼.
「譯著 主要作者.書名「M .譯者.出版地(城市名):出版者,出版年.起止頁碼.
「論文集 主要作者.題名「A .編者.論文集名「C .出版地(城市名):出版者,出版年.起止頁碼.
「會議論文 主要作者.題名「Z .會議名稱,會議召開地(城市名),召開年.
「學(xué)位論文 作者.題名「D .所在城市:保存單位,年份.
「研究報告 主要作者.題名「R .報告代碼及編號(或:保存地點:責(zé)任單位),年份.
「報紙 作者名.文章名「N.報紙名,出版日期(版次).
「電子文獻 作者.題名「EB/OL .………,發(fā)表或更新日期/引用日期.
(1)目標(biāo)需求與學(xué)習(xí)需求相結(jié)合的原則;
(2)學(xué)生、學(xué)校與社會需求兼顧的原則;
(3)大綱制定、教材選擇及教學(xué)實施要體現(xiàn)各種需求的原則。徐新宇提出對商務(wù)英語的需求分析要注意以下幾個方面即對將來工作環(huán)境的分析、對學(xué)生的分析、對商務(wù)英語語言的分析及對授課環(huán)境的分析等。自2009年以后有不少論文從需求分析的角度來分析商務(wù)英語專業(yè)課程設(shè)置的合理性,但主要是研究高職院校的商務(wù)英語專業(yè)。阮績智建議商務(wù)英語課程設(shè)置應(yīng)遵循目的導(dǎo)向原則、需求分析原則、科學(xué)系統(tǒng)原則以及發(fā)展原則。從研究現(xiàn)狀來看,關(guān)于需要分析理論研究方面的文章較多,但從需求分析理論的角度對新設(shè)本科商務(wù)英語專業(yè)的課程設(shè)置進行研究的很少。因此,本文擬從需求分析理論入手,通過走訪用人單位調(diào)查企業(yè)對商務(wù)英語專業(yè)畢業(yè)生的能力要求,并根據(jù)社會需求分析的結(jié)果提出商務(wù)英語專業(yè)課程設(shè)置的改進建議。
二、社會需求分析的結(jié)果與討論
(一)用人單位招聘廣告分析作者通過走訪人才市場、深入企業(yè)等方式收集到一些典型企業(yè)的招聘廣告,筆者主要對廣告中的英語能力要求,跨文化交際能力要求和綜合素質(zhì)要求進行分析。
1.英語能力要求通過對企業(yè)招聘廣告中的分析,筆者發(fā)現(xiàn)企業(yè)對商務(wù)英語專業(yè)學(xué)生的英語能力要求主要包括英語水平整體要求和英語技能要求。對于英語水平整體要求,多數(shù)企業(yè)都要求英語良好,通過大學(xué)英語4級考試;也有不少企業(yè)要求英語流利,通過大學(xué)英語6級考試。在調(diào)查分析中還發(fā)現(xiàn),盡管商務(wù)英語專業(yè)的本科生都會參加英語專業(yè)四級和八級的考試,學(xué)生基本上都能通過專業(yè)四級考試,而且也有不少學(xué)生通過專業(yè)八級考試,但是企業(yè)招聘廣告中對專業(yè)四級和八級的要求很少。另外,在英語能力要求中出現(xiàn)頻率較高的兩項是口語及寫作能力??梢?用人單位更加注重英語的實際運用能力。
2.跨文化交際能力要求目前,越來越多的知名的外資企業(yè)、國有企業(yè)以及一些民營企業(yè)在招聘廣告上都明確寫道“有海外留學(xué)或工作經(jīng)歷者優(yōu)先”。這其實就是對員工跨文化交際能力的一種要求。在海外留學(xué)或工作過的人由于在不同文化背景過得到過鍛煉,往往被用人單位認(rèn)為可能外語能力會高一些,關(guān)鍵是他們的海外經(jīng)歷培養(yǎng)了他們的國際化視野,應(yīng)該比沒有這個經(jīng)歷的人在對外交往中思維更靈活,溝通交際能力更強。隨著經(jīng)濟全球化程度的不斷加深,社會更需要較強跨文化交際能力的人才。這種對跨文化交際能力的社會要求應(yīng)當(dāng)體現(xiàn)在具體的課程設(shè)置上,通過專業(yè)課程的學(xué)習(xí)培養(yǎng)學(xué)生在提供英語能力的同時提高文化差異的敏感性,掌握靈活處理不同文化之間的交流和人際溝通的能力。
3.綜合素質(zhì)要求對于招聘廣告中提到的“對待工作認(rèn)真、負(fù)責(zé)、積極熱情”可將其視為工作態(tài)度,此外還提出了開拓能力,創(chuàng)新能力,研究能力,溝通能力,人際交往能力,團隊合作精神,適應(yīng)能力,以及在較強壓力下工作的能力等要求,可以將上述要求歸納為綜合素質(zhì)要求。通過對招聘廣告中對綜合素質(zhì)要求的調(diào)查顯示工作態(tài)度是用人單位最關(guān)注的事項之一。對于工作態(tài)度的引導(dǎo)雖然很難設(shè)置成一門課程,但是學(xué)??梢酝ㄟ^課程設(shè)置來體現(xiàn)和強化認(rèn)真嚴(yán)謹(jǐn)?shù)木窦皩W(xué)習(xí)態(tài)度,以便于學(xué)生在將來能將此種態(tài)度有效地延伸到工作崗位中。其次良好的溝通能力也是用人單位比較注重的。在實際工作中這種通過語言協(xié)商討論并達成共識的能力較為重要,因此商務(wù)英語專業(yè)可以通過開設(shè)跨文化交際和商務(wù)溝通等課程中以培養(yǎng)和鍛煉學(xué)生的溝通能力。
(二)用人單位訪談記錄分析通過走訪一些企業(yè),與用人單位的相關(guān)人員進行面對面訪談,將訪談記錄整理分析后,得出用人單位對商務(wù)英語專業(yè)畢業(yè)生的要求可以總結(jié)為如下三點:
1.能夠有效地交流能夠與客戶尤其是外國客戶有效交流是企業(yè)發(fā)展的必要條件以及成功的基礎(chǔ)。很多情況下,盡管做了充足的準(zhǔn)備,但由于在傳達產(chǎn)品信息或進行項目策劃時沒有做到有效的交流,或交際技能的欠缺而無法取得預(yù)期的效果。一些用人單位指出在這種跨文化的商務(wù)交際中,為了避免造成誤解,語言的恰當(dāng)使用及對雙方文化差異的深刻理解是極其重要的,具備跨文化交際能力的人不僅能夠勝任與外國人的交流,還能夠克服文化優(yōu)越感和文化偏見,能夠和來自異國文化背景的人互相達成妥協(xié)與理解,達到互惠雙贏的結(jié)果。
2.能夠熟練運用商務(wù)英語語言技能很多企業(yè)負(fù)責(zé)人在訪談的時候都強調(diào)英語口語在對外工作中的重要性,希望學(xué)校能加強學(xué)生在商務(wù)交際中口語能力的培養(yǎng)。大部分畢業(yè)生在跨文化交際中不能使用較地道的英語進行交流,即便再擅長交際策略及技巧,也不能出色地完成任務(wù)。此外,在具有的商務(wù)交流中商務(wù)專業(yè)術(shù)語的正確使用也是非常重要的,這就需要學(xué)生平時多積累。對商務(wù)英語閱讀和寫作的要求如下:熟悉各種體裁的商務(wù)文件(如合同、報告、信函、備忘錄等),并能用準(zhǔn)確的商務(wù)術(shù)語和恰當(dāng)?shù)恼Z言進行撰寫,能夠快速閱讀并找到特定信息。一些用人單位指出大部分商務(wù)英語專業(yè)畢業(yè)生普通英語的閱讀和寫作能力較好,但在商務(wù)背景下的英語語言技能就需要加強。
3.能夠較全面且正確地掌握商務(wù)知識和商務(wù)操作流程具備一定的商務(wù)專業(yè)知識是商務(wù)英語專業(yè)學(xué)生與英語專業(yè)學(xué)生的一個重要區(qū)別。大部分用人單位認(rèn)為學(xué)校和學(xué)生雙方往往重視英語語言能力的提高,對于商務(wù)知識有所忽略。一些企業(yè)招聘人員在訪談中提到對于像經(jīng)濟學(xué)、管理學(xué)、國際金融、國際貿(mào)易這些商務(wù)知識在商務(wù)實踐中使用很多,應(yīng)加以重視,希望學(xué)校能系統(tǒng)開始這些課程。此外,一部分用人單位抱怨學(xué)生的實踐經(jīng)驗太少,招聘的畢業(yè)生剛開始無法獨立工作,必須培訓(xùn)3到6個月才能掌握商務(wù)操作流程,較耗費時間和資源。有的企業(yè)建議學(xué)校增加學(xué)生進企業(yè)實習(xí)的機會,讓學(xué)生多到實際工作環(huán)境中去體驗和學(xué)習(xí)。通過用人單位訪談記錄和招聘廣告的分析,可以得出用人單位對商務(wù)英語專業(yè)畢業(yè)生的整體需求有以下幾方面:(1)能夠在商務(wù)背景下正確地運用英語的語言能力;(2)熟悉基本的商務(wù)知識;(3)熟練掌握商務(wù)操作技能;(4)擅于運用交際策略的能力;(5)熟悉國際商務(wù)文化,具備跨文化交際的意識及能力;(6)具備較高的綜合素質(zhì)。
三、對高校商務(wù)英語專業(yè)課程設(shè)置的改進建議
通過前面的需求分析研究,商務(wù)英語專業(yè)畢業(yè)生不但要具備以下能力:(1)外語應(yīng)用與跨文化溝通能力即具備較強的聽、說、讀、寫、譯能力和運用英語進行跨文化溝通能力;(2)專業(yè)實踐與創(chuàng)新能力即具有國際視野,能按國際慣例從事商務(wù)活動,處理各種關(guān)系的專業(yè)實踐能力;了解國際商務(wù)發(fā)展動態(tài)和行業(yè)需求,在外經(jīng)、外貿(mào)、外事、管理、金融等領(lǐng)域具有一定的創(chuàng)新能力;(3)綜合素質(zhì)與職業(yè)發(fā)展能力即具有良好的職業(yè)道德和人文素養(yǎng),具備較強的自主學(xué)習(xí)能力、獨立工作和團隊協(xié)作能力以及基本的第二外語應(yīng)用能力。與普通英語相比,商務(wù)英語課程設(shè)置中的需求分析尤為重要。有效合理的課程設(shè)置應(yīng)該考慮到學(xué)習(xí)者和社會雙方的需求,并以市場為導(dǎo)向。從市場經(jīng)濟學(xué)的角度來看,我們可以將學(xué)校培養(yǎng)的學(xué)生視為面向市場的“商品”,將用人單位視為“消費者”。消費者是否會選擇商品取決于其自身的需要,因此,學(xué)校在設(shè)置課程之前要對用人單位的需求有明確的認(rèn)識。此外,課程設(shè)計者如果對學(xué)生選擇商務(wù)英語專業(yè)的動機及其主觀需求有所了解,那么教學(xué)內(nèi)容和教學(xué)方法的選擇也會有相應(yīng)的改進。
不可質(zhì)疑的是科技英語的翻譯對于一個國家來說是至關(guān)重要的。隨著加入WTO,中國比起以前來說更加開放了,并且也緊追世界科技發(fā)展的腳步。如此,科技英語的翻譯就成為中國的科學(xué)技術(shù)發(fā)展的及其重要的推動力。好的科技英語翻譯需要翻譯者對英,漢兩種語言都要有良好的了解,能夠自如的將同樣的深層意思用符合不同語言特點的表層結(jié)構(gòu)表達出來;同樣也需要譯者對所涉及學(xué)科有基本的了解,而且在日常翻譯實踐中要善于積累有關(guān)科技詞匯,盡量使譯文準(zhǔn)確,通暢。
二、科技英語的特點
(一)詞匯特點科技英語的詞匯主要分為三大類:普通詞匯,半科技詞匯以及術(shù)語和高度技術(shù)性的詞匯。普通詞匯在科技英語的行文中還是占絕大多數(shù)?,F(xiàn)今,半科技詞匯也被認(rèn)為是普通詞匯,因為其在現(xiàn)代社會中應(yīng)用也相當(dāng)廣泛。句法特點
1.長句科技英語的主要特點之一就是長句。因為長句更能將信息表達的更加細(xì)致和準(zhǔn)確。如果句子太長又會引起讀者的反感,所以大多數(shù)科技英語的長句通常會由逗號隔開。例如:Thestressescontinuedtobuildinthisareaoftheship,①wheretherewerelargeopeningsforamainaccess,②themachinerycasingfortheReciprocatingEngineRoom,③theuptakesandintakesfortheboilers,④theashpitdooronportsideofBoilerRoomNo.1,5andtheturbineenginecasing.
2.被動語態(tài)科技英語習(xí)慣用被動語態(tài)表達目的和精確的科技事實。例如:ThemysteryaroseagainwhenthewreckoftheTitanicwasdiscoveredin1985andthehullwasfoundintwopieces.
(二)文體特征科技英語的作者都試圖將語言表達得更加準(zhǔn)確、精煉??萍加⒄Z的行文樸素,目的就是告訴人們事實,文章結(jié)構(gòu)緊湊嚴(yán)密,表達清晰準(zhǔn)確,強調(diào)客觀性。
三、科技英語翻譯技巧
(一)名詞化在漢語中,名詞通常就只作為名詞使用。而在英語,尤其是科技英語中,名詞可能會指示特性,動作,或是抽象的感受,例如:kindness,movement等。在翻譯這些名詞時,可將其譯成形容詞或動詞。例如:原文:Thestudyprovidedtheloadinginformationneededtotake“snapshots”oftheship’sstateofstressduringthesinkingprocess.譯文:此次研究為能迅速了解船在沉沒過程中的壓力狀況提供了必要的荷載數(shù)據(jù)。
增減詞匯為了翻譯的更加通順,符合漢語的行文習(xí)慣。在科技英語漢譯時可適當(dāng)增減詞匯。例如:原文:Foursurvivorswithfirsthandknowledge,rememberingprobablythemostimportant–certainlythemosttraumatic–eventintheirlives,disagreedononemajorpoint,譯文:四個擁有第一手資料的生還者,記得可能是最重要的—也一定是最為痛苦的—發(fā)生在他們生命中的大事,他們對于一個主要問題持有不同意見。
(二)定語從句的翻譯
1.將定語從句翻譯成定語修飾詞,直接放在關(guān)鍵詞前。通過對比中英兩種語言的句子結(jié)構(gòu),我們可以看出英語中的定語從句可以放在句子中的任何位置。但是在中文中,通常放在關(guān)鍵詞前面。所以大部分的定語從句翻譯都可以采用該原則。例如:原文:Theinitialmodelingeffortfocusedonthedeterminationofthelocationandmagnitudeofhigh-stressregionsthatdevelopedinthehullwhilesheremainedonthesurface.譯文:最初的模型著重于在船身還停留在海面上時的高壓區(qū)的位置,和在船身上產(chǎn)生的高壓區(qū)的重要性的檢測。
2.將定語從句譯為狀語從句。原文:Theextentofthedamageevidentinthesternwreckimpliesthatthebowsectionmayhavepulledthesternsectionquicklybelowthewater’ssurface,resultinginstructuralimplosionsthatcausedsignificantdamage.譯文:船尾部分損毀的面積表明船頭可能將船尾迅速地拉入水中,造成結(jié)構(gòu)上的突然壓縮,這才導(dǎo)致了重大的事故發(fā)生。
四、狀語從句的翻譯
(一)時間狀語從句翻譯時,放在主句之前。例如:原文:e.gJustthreehoursafteritcollidedwithaniceberg,themajesticTitanicvanishedbeneaththecoldwatersoftheNorthAtlantic.譯文:在撞擊到冰山的三個小時之后,雄偉的泰坦尼克號消失在了冰冷的北大西洋中。
(二)地點狀語從句翻譯時放在主句之前或之后。例如:原文:e.gThedepthswheretheseeventsoccurredcannotbeestimatedwithanyprecision譯文:這一事件發(fā)生的深度不能精確的被測量。
(三)目的狀語從句翻譯時在主句前增加“為了”。例如:原文:Tohelpsolvethismystery,theDiscoveryChannel,indevelopingitsaward-winning“Titanic:AnatomyofaDisaster”televisiondocumentary,approachedGibbs&Cox,Inc.,oneoftheoldestnavalarchitectureandmarineengineeringfirmsintheworld.譯文:為了幫助解開這一謎團,發(fā)現(xiàn)頻道在它的獲獎作品“泰坦尼克號:解剖災(zāi)難”這一電視紀(jì)錄片中,連同吉伯斯•考克斯,一家全球歷史最為悠久之一的造船與海洋工程公司共同合作。
(四)比較狀語從句原文:Itisbelievedthatthiscompressionofthehullgirderbroughtaboutthefailureofthesideshellplates,andalsofreedequipmentinsidetheship,suchastheboilersinBoilerRoomNo.1,fromitsfoundations.譯文:人們相信船體大梁的壓縮引起了側(cè)框架金屬般的失靈,同時使設(shè)備在船內(nèi)釋放,好像鍋爐在一號鍋爐房內(nèi)從它的根基釋放一樣。
五、結(jié)語
1.金融英語詞匯的特征及翻譯
2.金融英語翻譯中的語序轉(zhuǎn)換
3.淺論金融英語文本詞匯的英漢理解與翻譯——以翻譯美聯(lián)儲2005年貨幣政策報告為例
4.金融英語翻譯方法和技巧
5.金融英語翻譯中的社交語境功能
6.關(guān)于強化金融英語課程建設(shè)的思考
7.金融英語的翻譯策略探究
8.金融英語的語言特點及翻譯
9.依托金融行業(yè)探索高職金融英語教學(xué)改革
10.淺析金融英語翻譯
11.應(yīng)用型人才需求下的金融英語教學(xué)探討
12.金融英語長句翻譯探討
13.論ESP金融英語的詞匯教學(xué)
14.金融英語術(shù)語的特征及其翻譯
15.金融英語課程教學(xué)質(zhì)量學(xué)生滿意度實證分析——以哈爾濱金融學(xué)院為例
16.淺談金融英語翻譯基本特點
17.淺析微課在金融英語口語教學(xué)中的應(yīng)用
18.金融英語翻譯中的關(guān)聯(lián)原則
19.高職院?!敖鹑谟⒄Z”課程教學(xué)改革初探
20.論應(yīng)用能力培養(yǎng)導(dǎo)向的獨立學(xué)院金融英語教學(xué)模式
21.金融英語的語言特點及翻譯策略
22.金融英語課程教學(xué)模式的設(shè)計與應(yīng)用
23.語域理論指導(dǎo)下的金融英語翻譯(英文)
24.對高校金融英語課程教學(xué)對策的思考
25.基于職業(yè)能力導(dǎo)向的金融英語專業(yè)教學(xué)模式芻議
26.基于ESP理論的金融英語教學(xué)改革初探
27.談建構(gòu)主義理論觀照下的金融英語教學(xué)改革
28.高職金融英語分步分層教學(xué)模式的研究與探索
29.金融英語教學(xué)與學(xué)科建設(shè)
30.金融英語詞匯的特點及其翻譯
31.應(yīng)用型人才培養(yǎng)視角下的金融英語教學(xué)改革
32.金融英語詞匯的翻譯策略探索
33.以培養(yǎng)應(yīng)用型人才為導(dǎo)向的金融英語教材建設(shè)
34.金融英語課堂教學(xué)工作坊:研討型課堂教學(xué)改革與實踐
35.淺析金融英語在實際中的應(yīng)用——以金融文秘英語為例
36.提升能力需求視閾下的金融英語教學(xué)策略設(shè)計
37.語境在金融英語詞匯教學(xué)中的應(yīng)用探析
38.從語域理論解析金融英語翻譯的對等原則——以翻譯國際貨幣基金組織對美國的FSSA報告為例
39.芻議應(yīng)用型本科院校金融英語教學(xué)改革研究
40.金融英語的語言經(jīng)濟學(xué)分析
41.金融英語的語言特征及其翻譯
42.金融英語教學(xué)的現(xiàn)狀和存在的問題分析
43.基于課程設(shè)置的金融英語教學(xué)探究
44.以英文電影豐富《金融英語》課堂教學(xué)的探討
45.國際化就業(yè)環(huán)境下的金融英語應(yīng)用模式研究
46.改進金融英語教學(xué)的基本構(gòu)想
47.平行文本在金融英語漢譯中的應(yīng)用
48.項目化教學(xué)法視角下的高職金融英語教學(xué)改革
49.淺析金融英語的特點及其翻譯
50.金融英語的詞性轉(zhuǎn)換研究
51.金融英語的幾種教學(xué)方法
52.金融英語教學(xué)策略創(chuàng)新與金融雙語教學(xué)共生性研究
53.基于應(yīng)用型人才培養(yǎng)的金融英語教學(xué)改革研究
54.金融英語教學(xué)法初探
55.高校專門用途英語教學(xué)路徑探討——以金融英語教學(xué)為例
56.高職院校金融英語教學(xué)現(xiàn)狀分析及對策研究
57.獨立學(xué)院《金融英語》教學(xué)目標(biāo)定位探析
58.金融英語翻譯中的社交語境功能
59.金融英語詞匯的語義變遷探析
60.培養(yǎng)大學(xué)生學(xué)習(xí)興趣 改善金融英語課程教學(xué)效果
61.成人金融英語教學(xué)的特色與策略
62.金融英語課程教學(xué)改革探析
63.關(guān)于強化民辦高校金融英語教學(xué)的思考
64.金融英語信函的體裁特點與撰寫原則
65.建構(gòu)特色金融英語課程體系 服務(wù)龍江經(jīng)濟發(fā)展
66.論金融英語熱點詞匯的翻譯
67.從圖式理論的角度探討金融英語詞匯教學(xué)
68.基于項目教學(xué)法的金融英語教學(xué)改革探索
69.基于能力本位的金融英語教學(xué)改革
70.學(xué)習(xí)金融英語如何“難”中求“易”
71.金融英語技能競賽與復(fù)合型、應(yīng)用型金融人才培養(yǎng)
72.開展金融英語技能大賽的必要性研究
73.人際功能與慕課時代金融英語對復(fù)合型人才培養(yǎng)的探究
74.高職院校EOP課程需求分析綱論——以金融英語課程為例
75.試論上海二本院校金融英語專業(yè)詞匯教學(xué)
76.滿足應(yīng)用型人才需求,改革金融英語教學(xué)
77.金融專業(yè)學(xué)生在金融英語閱讀方面存在的障礙及對策分析
78.淺析以多模態(tài)理論為基礎(chǔ)的金融英語教學(xué)
79.金融英語教材建設(shè)芻議
80.高職高專金融英語教學(xué)改革初探
81.金融英語術(shù)語的特點及其翻譯
82.多媒體網(wǎng)絡(luò)環(huán)境下金融英語教學(xué)模式探析
83.關(guān)于金融英語翻譯教學(xué)的調(diào)查與研究
84.專業(yè)人才培養(yǎng)視閾下的金融英語教學(xué)探究
85.圖式理論在金融英語教學(xué)中的運用策略
86.基于時事新聞的金融英語教學(xué)探討
87.基于平行雙語語料庫金融英語翻譯課程教學(xué)模式探索
89.Grice方式準(zhǔn)則在金融英語翻譯中的應(yīng)用
90.金融英語詞匯中的縮略語現(xiàn)象
91.基于金融英語能力的復(fù)合型金融人才培養(yǎng)研究
92.金融英語技能競賽設(shè)計
93.淺談高職高?!敖鹑谟⒄Z”課程中的實踐教學(xué)
94.高職金融英語教學(xué)的研究與實踐
95.淺談國際化就業(yè)環(huán)境下的金融英語應(yīng)用
96.當(dāng)前金融英語熱點詞匯分析
97.金融英語與金融全球化競爭
98.語用學(xué)在金融英語教學(xué)中的作用
99.淺談微課在金融英語口語教學(xué)中的應(yīng)用
100.“學(xué)習(xí)者為中心”教學(xué)理念下金融英語教學(xué)探討
101.主位結(jié)構(gòu)理論在金融英語教學(xué)中的應(yīng)用
102.金融英語培訓(xùn)中語用能力的培養(yǎng)
103.基于福建綠色經(jīng)濟的發(fā)展研發(fā)金融英語校本課程探究
104.金融英語證書綜合考試備考策略
105.高職高專金融英語教學(xué)現(xiàn)狀及對策探究
106.圖式理論與金融英語閱讀模式構(gòu)建及教學(xué)啟示
107.從翻譯生態(tài)環(huán)境視角淺析金融英語新聞的漢譯
108.高職高?!督鹑谟⒄Z》教學(xué)改革初探
109.基于溝通目的的金融英語培訓(xùn)模式初探
110.高職院校金融英語教學(xué)現(xiàn)狀及對策
111.淺談高職金融英語教材與教學(xué)
112.談?wù)劧嗝襟w金融英語計算機輔助教學(xué)的發(fā)展
113.高職高專金融英語課程改革中的幾點經(jīng)驗
114.對等理論觀照下金融英語隱喻翻譯的喻體形象取舍策略
115.金融英語的詞匯特點及翻譯探討
116.概念整合理論視角下的金融英語詞匯學(xué)習(xí)—以金融術(shù)語為例
117.金融專業(yè)英語聽力理解與技能芻議
118.元認(rèn)知策略在金融英語閱讀教學(xué)中的運用
119.“學(xué)習(xí)者為中心”教學(xué)理念下金融英語教學(xué)探討
120.金融英語的詞匯擬人修辭手段
121.大學(xué)英語拓展課程金融英語聽說研究型課堂教學(xué)范式創(chuàng)新
122.金融專業(yè)英語詞匯的學(xué)習(xí)與掌握