一级a一级a爱片免费免会员2月|日本成人高清视频A片|国产国产国产国产国产国产国产亚洲|欧美黄片一级aaaaaa|三级片AAA网AAA|国产综合日韩无码xx|中文字幕免费无码|黄色网上看看国外超碰|人人操人人在线观看|无码123区第二区AV天堂

發(fā)電技術(shù)論文

時間:2023-03-21 17:03:03

導(dǎo)語:在發(fā)電技術(shù)論文的撰寫旅程中,學(xué)習(xí)并吸收他人佳作的精髓是一條寶貴的路徑,好期刊匯集了九篇優(yōu)秀范文,愿這些內(nèi)容能夠啟發(fā)您的創(chuàng)作靈感,引領(lǐng)您探索更多的創(chuàng)作可能。

發(fā)電技術(shù)論文

第1篇

關(guān)鍵詞:天然氣燃氣-蒸汽聯(lián)合循環(huán)發(fā)電價格政策

在“西部大開發(fā)”戰(zhàn)略的指引下,史無前例的“西氣東輸”工程全面施工,引進液化天然氣和管道氣項目也全面開展。國家重點支持發(fā)展的天然氣燃氣—蒸汽輪機聯(lián)合循環(huán)發(fā)電工程首批聯(lián)合招標項目裝機總?cè)萘?000MW,計劃于2005~2006年建成發(fā)電。以引進技術(shù)形成自主開發(fā)能力為目標的燃氣輪機制造產(chǎn)業(yè)也在分階段實現(xiàn)。我國天然氣燃氣輪機和聯(lián)合循環(huán)發(fā)電進入一個新的發(fā)展時期。

據(jù)統(tǒng)計,2001年世界天然氣消費量達24049億立方米,天然氣在世界能源消費結(jié)構(gòu)中的比例達24.7%。第16世界石油大會報告認為2010年全球天然氣消費量將增加到49000億立方米,且預(yù)計到2040年天然氣在世界能源消費結(jié)構(gòu)中的比例將上升到51%。

當今世界主要工業(yè)發(fā)達國家能源結(jié)構(gòu)中天然氣所占比例為:美國25.8%,英國38.1%,俄羅斯54.6%。而我國僅為2.5%。

此外在1995年世界電力結(jié)構(gòu)中天然氣發(fā)電占18.54%,當時我國是1.4%。近期我國天然氣燃氣輪機發(fā)電裝機容量將有增加,但預(yù)計到2006年天然氣發(fā)電在電力結(jié)構(gòu)中的比重僅達2.7%。

以上統(tǒng)計說明,我國在天然氣應(yīng)用和天然氣發(fā)電上與世界工業(yè)發(fā)達國家相比有巨大差距,努力推動我國天然氣發(fā)電的任務(wù)是緊迫的,也是有很大發(fā)展空間的。

一優(yōu)質(zhì)燃料天然氣應(yīng)主要用于燃氣輪機聯(lián)合循環(huán)的高效發(fā)電。

天然氣是化石能源中最潔凈的燃料,在燃燒性能、熱值、運輸?shù)雀鞣矫娑际亲顑?yōu)質(zhì)的燃料。燃氣輪機和聯(lián)合循環(huán)發(fā)電應(yīng)用熱力學(xué)上布雷頓循環(huán)和朗肯循環(huán)相結(jié)合,既有利于高品位能量的轉(zhuǎn)換,又能充分利用較低品位的能量,具有能源綜合利用和最高效率的優(yōu)點。當今燃氣—蒸汽輪機聯(lián)合循環(huán)發(fā)電熱效率已達到60%,遠高于常規(guī)或超臨界火力發(fā)電水平,(見表1)。

應(yīng)用天然氣燃料燃氣/蒸汽聯(lián)合循環(huán)發(fā)電的另一個優(yōu)點是最低的環(huán)境污染排放。燃氣輪機具有優(yōu)良的燃燒特性,控制低污染排放技術(shù)水平不斷提高。天然氣燃氣/蒸汽輪機聯(lián)合循環(huán)機組與常規(guī)火力發(fā)電機組相比具有最低的污染排放,被稱為“綠色能源”,是可持續(xù)發(fā)展最有希望的發(fā)電技術(shù)(見表2)。

表2裝機容量500MW燃用天然氣電廠和燃煤電廠的環(huán)境影響比較

注:1原煤熱值按全國平均值19678kJ/kg(4700kcal/kg)計;

2原煤含硫按1.1%,灰份按27%計;

3年耗煤量150萬噸,除塵效率98.5%;

4燃天然氣電廠值取國外資料

由于天然氣燃氣-蒸汽聯(lián)合循環(huán)是最理想的發(fā)電方式,世界燃氣輪機發(fā)電裝機容量大幅度增長。1996年6月到1997年5月世界燃氣輪機訂貨總功率數(shù)28222MW,1998年6月到1999年5月訂貨總功率翻了一番,達到64254MW。燃氣輪機發(fā)電已是電力結(jié)構(gòu)中的重要組成部分,在新增發(fā)電容量中更占主要份額。據(jù)報告美國南方電力公司發(fā)電新增裝機容量中燃氣輪機和聯(lián)合循環(huán)占90%以上。

二我國燃氣輪機發(fā)電應(yīng)是電力結(jié)構(gòu)中的又一重要組成部分

世界能源結(jié)構(gòu)中,煤炭仍是最豐富的資源。預(yù)測全球石油儲量尚可開發(fā)60年,天然氣有120年,煤炭則有200年。我國對煤炭的依賴尤為重要。中國是煤炭大國,現(xiàn)探明的天然氣儲量有限,應(yīng)用天然氣還要依靠進口,在天然氣發(fā)電方面也剛起步。我國以燃煤火電為主的狀況將會持續(xù)一個漫長的歲月。

但是我國應(yīng)積極發(fā)展天然氣燃氣輪機發(fā)電,目的是優(yōu)化我國電力結(jié)構(gòu),提升我國電力技術(shù)水平。這就要求充分發(fā)揮天然氣燃氣-蒸汽聯(lián)合循環(huán)發(fā)電的優(yōu)點,來加速發(fā)展我國天然氣發(fā)電。

燃氣輪機聯(lián)合循環(huán)發(fā)電與常規(guī)火力發(fā)電相比,除具有熱效率高、排放污染少外,還具有靈活機動、調(diào)峰性能好,以及投資低、建設(shè)周期短、占地面積少等一系列優(yōu)點。

燃氣輪機和聯(lián)合循環(huán)發(fā)電在電力結(jié)構(gòu)中最適當?shù)奈恢没蛴猛臼牵?/p>

1人口密集地區(qū)、經(jīng)濟發(fā)達地區(qū);摘要:本文對使用優(yōu)質(zhì)燃料天然氣高效發(fā)電的燃氣-蒸汽聯(lián)合循環(huán)發(fā)電的應(yīng)用特點加以分析,提出燃氣-蒸汽聯(lián)合循環(huán)發(fā)電在電力結(jié)構(gòu)中的作用,提出研究、制定合理價格政策的建議,以推動我國天然氣燃氣輪機發(fā)電事業(yè)。

關(guān)鍵詞:天然氣燃氣-蒸汽聯(lián)合循環(huán)發(fā)電價格政策

在“西部大開發(fā)”戰(zhàn)略的指引下,史無前例的“西氣東輸”工程全面施工,引進液化天然氣和管道氣項目也全面開展。國家重點支持發(fā)展的天然氣燃氣—蒸汽輪機聯(lián)合循環(huán)發(fā)電工程首批聯(lián)合招標項目裝機總?cè)萘?000MW,計劃于2005~2006年建成發(fā)電。以引進技術(shù)形成自主開發(fā)能力為目標的燃氣輪機制造產(chǎn)業(yè)也在分階段實現(xiàn)。我國天然氣燃氣輪機和聯(lián)合循環(huán)發(fā)電進入一個新的發(fā)展時期。

據(jù)統(tǒng)計,2001年世界天然氣消費量達24049億立方米,天然氣在世界能源消費結(jié)構(gòu)中的比例達24.7%。第16世界石油大會報告認為2010年全球天然氣消費量將增加到49000億立方米,且預(yù)計到2040年天然氣在世界能源消費結(jié)構(gòu)中的比例將上升到51%。

在電力發(fā)展中可按滿足高峰負荷來擴大裝機容量,必須配備一批調(diào)峰機組或增加備用容量。這將會帶來電網(wǎng)調(diào)整的困難,也影響電網(wǎng)建設(shè)的經(jīng)濟性。當代電力系統(tǒng)在繼續(xù)發(fā)展以大型機組為核心大電網(wǎng)的同時,又注重中、小型發(fā)電的互補作用。以天然氣直燃的微型燃氣輪機分布式冷、熱、電聯(lián)供,可使用管網(wǎng)或車運天然氣,大大減少在電網(wǎng)上的耗電,可化解電網(wǎng)峰谷差矛盾,提高電網(wǎng)的安全性和經(jīng)濟性,這已成為當代電力發(fā)展中的又一熱點。

微型燃氣輪機簡單循環(huán)效率達40%,壽命45000小時。微型燃氣輪機用于能源綜合利用的冷、熱、電聯(lián)供熱效率可達80~90%。目前美國、歐洲、日本都已批量生產(chǎn)微型燃氣輪機,其性能見表3。

表3先進微型燃氣輪機主要性能指標

性能指標

高效率燃料—電力轉(zhuǎn)換效率至少為40%,熱電聯(lián)產(chǎn)效率>85%

環(huán)境氮氧化物(NOx)<7ppm(燃天然氣)

耐久性大修期之間可靠運行1000小時,運行壽命至少為45000小時

發(fā)電費用系統(tǒng)成本<500美元/kW,發(fā)電費用能與市場應(yīng)用替代方案(包

括電網(wǎng))具有競爭力

燃料適應(yīng)性可選用多種燃料,包括柴油、乙醇、垃圾掩埋場瓦斯和生化燃料

我國科技部863計劃中有自主產(chǎn)權(quán)微型燃氣輪機的開發(fā)項目,正在試制100kW渦輪初溫900℃,簡單循環(huán)供電效率29%的微型燃機,2004年將制成樣機。我國發(fā)展天然氣微型燃氣輪機的冷、熱、電聯(lián)供的條件逐步具備,這將為我國解決峰谷差矛盾找新的出路。

四應(yīng)根據(jù)天然氣燃氣輪機聯(lián)合循環(huán)發(fā)電的特點研究制定合理的政策,進一步推動天然氣發(fā)電的發(fā)展。

當前我國天然氣燃氣輪機聯(lián)合循環(huán)發(fā)電正處于起步階段,國家尚無完善的政策法規(guī)按燃機電廠在電網(wǎng)中發(fā)揮的特殊作用來制定合理的電價。而天然氣作為優(yōu)質(zhì)燃料,價格偏高,且國內(nèi)價格比現(xiàn)行國際價格更高。天然氣燃氣輪機聯(lián)合循環(huán)發(fā)電在經(jīng)濟上與常規(guī)燃煤火力發(fā)電機組相比還缺少競爭力,而這點常常會限制新穎發(fā)電技術(shù)發(fā)揮作用,影響我國電力建設(shè)的普遍水平(見表4)。

在市場經(jīng)濟發(fā)展規(guī)律支配下,根據(jù)同網(wǎng)、同質(zhì)、同價和公平競爭的原則,天然氣燃氣-蒸汽聯(lián)合循環(huán)發(fā)電的重要作用,應(yīng)在經(jīng)濟價值上合理的反映出來。

例如天然氣燃氣輪機在電網(wǎng)中擔(dān)當調(diào)峰或作備用容量,首先會使機組頻繁起停,直接影響經(jīng)濟性和降低設(shè)備維修間隔周期,增加運行成本。根據(jù)燃氣輪機經(jīng)濟性和可靠性的統(tǒng)計規(guī)律,機組起停一次相當于10~20個當量運行小時。承擔(dān)電網(wǎng)調(diào)峰作用的燃氣輪機,年起停次數(shù)一般大于300次以上,相當于增加了3000~6000個運行小時數(shù)。如果實際運行3500小時,機組當量運行小時數(shù)已達6500~9500小時。

再考慮到調(diào)峰機組在負荷低谷時段不發(fā)電,在高峰或平峰時段也常減負荷,機組年運行小時數(shù)經(jīng)折合后約為3500小時。若是擔(dān)當電網(wǎng)備用的機組其年運行小時數(shù)更低。年運行小時數(shù)低的調(diào)峰機組比以基本負荷連續(xù)長期運行機組的運行成本將隨運行小時數(shù)的減少而成比例增加。因電網(wǎng)需要而擔(dān)當調(diào)峰任務(wù)的機組,折合年運行小時3500小時,但發(fā)電的價值卻與7000小時左右的基本負荷相當。

調(diào)峰機組只能依靠合理的峰谷電價差來彌補其調(diào)峰帶來的經(jīng)濟損失。發(fā)改委[2003]14號文確定峰、谷時段電價差在2~5倍當今世界主要工業(yè)發(fā)達國家能源結(jié)構(gòu)中天然氣所占比例為:美國25.8%,英國38.1%,俄羅斯54.6%。而我國僅為2.5%。

此外在1995年世界電力結(jié)構(gòu)中天然氣發(fā)電占18.54%,當時我國是1.4%。近期我國天然氣燃氣輪機發(fā)電裝機容量將有增加,但預(yù)計到2006年天然氣發(fā)電在電力結(jié)構(gòu)中的比重僅達2.7%。

以上統(tǒng)計說明,我國在天然氣應(yīng)用和天然氣發(fā)電上與世界工業(yè)發(fā)達國家相比有巨大差距,努力推動我國天然氣發(fā)電的任務(wù)是緊迫的,也是有很大發(fā)展空間的。

一優(yōu)質(zhì)燃料天然氣應(yīng)主要用于燃氣輪機聯(lián)合循環(huán)的高效發(fā)電。

天然氣是化石能源中最潔凈的燃料,在燃燒性能、熱值、運輸?shù)雀鞣矫娑际亲顑?yōu)質(zhì)的燃料。燃氣輪機和聯(lián)合循環(huán)發(fā)電應(yīng)用熱力學(xué)上布雷頓循環(huán)和朗肯循環(huán)相結(jié)合,既有利于高品位能量的轉(zhuǎn)換,又能充分利用較低品位的能量,具有能源綜合利用和最高效率的優(yōu)點。當今燃氣—蒸汽輪機聯(lián)合循環(huán)發(fā)電熱效率已達到60%,遠高于常規(guī)或超臨界火力發(fā)電水平,(見表1)。

應(yīng)用天然氣燃料燃氣/蒸汽聯(lián)合循環(huán)發(fā)電的另一個優(yōu)點是最低的環(huán)境污染排放。燃氣輪機具有優(yōu)良的燃燒特性,控制低污染排放技術(shù)水平不斷提高。天然氣燃氣/蒸汽輪機聯(lián)合循環(huán)機組與常規(guī)火力發(fā)電機組相比具有最低的污染排放,被稱為“綠色能源”,是可持續(xù)發(fā)展最有希望的發(fā)電技術(shù)(見表2)。

表2裝機容量500MW燃用天然氣電廠和燃煤電廠的環(huán)境影響比較

注:1原煤熱值按全國平均值19678kJ/kg(4700kcal/kg)計;

2原煤含硫按1.1%,灰份按27%計;

3年耗煤量150萬噸,除塵效率98.5%;

4燃天然氣電廠值取國外資料

由于天然氣燃氣-蒸汽聯(lián)合循環(huán)是最理想的發(fā)電方式,世界燃氣輪機發(fā)電裝機容量大幅度增長。1996年6月到1997年5月世界燃氣輪機訂貨總功率數(shù)28222MW,1998年6月到1999年5月訂貨總功率翻了一番,達到64254MW。燃氣輪機發(fā)電已是電力結(jié)構(gòu)中的重要組成部分,在新增發(fā)電容量中更占主要份額。據(jù)報告美國南方電力公司發(fā)電新增裝機容量中燃氣輪機和聯(lián)合循環(huán)占90%以上。

二我國燃氣輪機發(fā)電應(yīng)是電力結(jié)構(gòu)中的又一重要組成部分

世界能源結(jié)構(gòu)中,煤炭仍是最豐富的資源。預(yù)測全球石油儲量尚可開發(fā)60年,天然氣有120年,煤炭則有200年。我國對煤炭的依賴尤為重要。中國是煤炭大國,現(xiàn)探明的天然氣儲量有限,應(yīng)用天然氣還要依靠進口,在天然氣發(fā)電方面也剛起步。我國以燃煤火電為主的狀況將會持續(xù)一個漫長的歲月。

但是我國應(yīng)積極發(fā)展天然氣燃氣輪機發(fā)電,目的是優(yōu)化我國電力結(jié)構(gòu),提升我國電力技術(shù)水平。這就要求充分發(fā)揮天然氣燃氣-蒸汽聯(lián)合循環(huán)發(fā)電的優(yōu)點,來加速發(fā)展我國天然氣發(fā)電。

燃氣輪機聯(lián)合循環(huán)發(fā)電與常規(guī)火力發(fā)電相比,除具有熱效率高、排放污染少外,還具有靈活機動、調(diào)峰性能好,以及投資低、建設(shè)周期短、占地面積少等一系列優(yōu)點。

燃氣輪機和聯(lián)合循環(huán)發(fā)電在電力結(jié)構(gòu)中最適當?shù)奈恢没蛴猛臼牵?/p>

1人口密集地區(qū)、經(jīng)濟發(fā)達地區(qū);2負荷中心或電網(wǎng)末梢,以及用電極度緊張地區(qū);

3主要用于電網(wǎng)的調(diào)峰

隨著我國國民經(jīng)濟高速發(fā)展和人民生活水平的提高,在相當長的時期內(nèi),我國一方面會存在電力緊張的狀況,另一方面電力負荷常常是多變、復(fù)雜且具有不穩(wěn)定性,例如:

1隨著電力總量增長,負荷峰谷差矛盾十分突出;

2社會專業(yè)化生產(chǎn)規(guī)模的提高,促進地區(qū)性電力負荷分布不平衡;

3農(nóng)村城市化和偏遠地區(qū)經(jīng)濟發(fā)展,全國大電網(wǎng)建設(shè)仍跟不上廣大地區(qū)發(fā)展用電需求;

4電力負荷的季節(jié)性變化也越來越大。

此外大型水電站和核電站建成后在電網(wǎng)中以基本負荷發(fā)電,電網(wǎng)則急需配置充分的調(diào)峰機組。

可見,我國必須將火電、水電、核電和各種先進的發(fā)電技術(shù)相結(jié)合,也必須加快發(fā)展天然氣燃氣輪機發(fā)電技術(shù)。燃氣輪機應(yīng)以其自身特點在電網(wǎng)中發(fā)揮重要作用。燃氣輪機發(fā)電應(yīng)是電力結(jié)構(gòu)中的又一重要組成部分。

三燃用天然氣的分布式燃氣輪機冷、熱、電聯(lián)供,可望為解決電力負荷峰谷差找到有效途徑。

隨著經(jīng)濟發(fā)展和人民生活水平的提高,用于空調(diào)、取暖的電力負荷明顯增加,造成日負荷和季節(jié)性負荷的峰谷差,這是世界各工業(yè)國家普遍存在的問題。我國現(xiàn)今人均用電擁有量遠遠低于工業(yè)發(fā)達國家的水平。我國電力的增長,其中一大部分將是滿足生活用電的增長。生活用電包括取暖、空調(diào)等各方面的電力消耗,伴隨著電力負荷的增長又加劇峰谷差的擴大。

按深圳市統(tǒng)計為例,2000年月最大負荷為210~339.5萬千瓦,月用電量為83177~187048萬千瓦時,季節(jié)性峰谷差達129.5萬千瓦;2002年月最大負荷為296.7~480萬千瓦,月用電量為112630~261780萬千瓦時,季節(jié)性峰谷差達183.3萬千瓦。據(jù)預(yù)測今年深圳市最高負荷將達到600萬千瓦,季節(jié)性峰谷差將超過200萬千瓦。據(jù)深圳市供電部門預(yù)計,深圳市現(xiàn)有空調(diào)負荷很可能超過100萬千瓦。

之間。實際價格差應(yīng)取在上限才趨向合理。

第2篇

現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進入現(xiàn)代電力電子時代。

1.1整流器時代

大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內(nèi)燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當時國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時的產(chǎn)物。

1.2逆變器時代

七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)?。這時的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。

1.3變頻器時代

進入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細加工技術(shù)和高壓大電流技術(shù)有機結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。

2.現(xiàn)代電力電子的應(yīng)用領(lǐng)域

2.1計算機高效率綠色電源

高速發(fā)展的計算機技術(shù)帶領(lǐng)人類進入了信息社會,同時也促進了電源技術(shù)的迅速發(fā)展。八十年代,計算機全面采用了開關(guān)電源,率先完成計算機電源換代。接著開關(guān)電源技術(shù)相繼進人了電子、電器設(shè)備領(lǐng)域。

計算機技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。

2.2通信用高頻開關(guān)電源

通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源),同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓撲結(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。

2.4不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。

現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

2.5變頻器電源

變頻器電源主要用于交流電機的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機實現(xiàn)無級調(diào)速。

國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進一步發(fā)展方向。

2.6高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。

2.7大功率開關(guān)型高壓直流電源

大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機和CT機等大型設(shè)備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

國內(nèi)對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8電力有源濾波器

傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。

電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

2.9分布式開關(guān)電源供電系統(tǒng)

分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓撲結(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴大。

分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應(yīng)加熱電源、電動機驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。

3.高頻開關(guān)電源的發(fā)展趨勢

在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達到近于理想的負載匹配和驅(qū)動控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。

3.1高頻化

理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為“開關(guān)變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術(shù)含量的價值。

3.2模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實質(zhì)上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動保護電路也裝到功率模塊中去,構(gòu)成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設(shè)計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設(shè)計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺新型的開關(guān)電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關(guān)電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術(shù),所有模塊共同分擔(dān)負載電流,一旦其中某個模塊失效,其它模塊再平均分擔(dān)負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時間。

3.3數(shù)字化

在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計和工作的。在六、七十年代,電力電子技術(shù)完全是建立在模擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯等技術(shù)的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設(shè)計來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計算機控制時,數(shù)字化技術(shù)就離不開了。

3.4綠色化

電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設(shè)備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀批量生產(chǎn)各種綠色開關(guān)電源產(chǎn)品奠定了基礎(chǔ)。

現(xiàn)代電力電子技術(shù)是開關(guān)電源技術(shù)發(fā)展的基礎(chǔ)。隨著新型電力電子器件和適于更高開關(guān)頻率的電路拓撲的不斷出現(xiàn),現(xiàn)代電源技術(shù)將在實際需要的推動下快速發(fā)展。在傳統(tǒng)的應(yīng)用技術(shù)下,由于功率器件性能的限制而使開關(guān)電源的性能受到影響。為了極大發(fā)揮各種功率器件的特性,使器件性能對開關(guān)電源性能的影響減至最小,新型的電源電路拓撲和新型的控制技術(shù),可使功率開關(guān)工作在零電壓或零電流狀態(tài),從而可大大的提高工作頻率,提高開關(guān)電源工作效率,設(shè)計出性能優(yōu)良的開關(guān)電源。

總而言之,電力電子及開關(guān)電源技術(shù)因應(yīng)用需求不斷向前發(fā)展,新技術(shù)的出現(xiàn)又會使許多應(yīng)用產(chǎn)品更新?lián)Q代,還會開拓更多更新的應(yīng)用領(lǐng)域。開關(guān)電源高頻化、模塊化、數(shù)字化、綠色化等的實現(xiàn),將標志著這些技術(shù)的成熟,實現(xiàn)高效率用電和高品質(zhì)用電相結(jié)合。這幾年,隨著通信行業(yè)的發(fā)展,以開關(guān)電源技術(shù)為核心的通信用開關(guān)電源,僅國內(nèi)有20多億人民幣的市場需求,吸引了國內(nèi)外一大批科技人員對其進行開發(fā)研究。開關(guān)電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產(chǎn)值需求的電力操作電源系統(tǒng)的國內(nèi)市場正在啟動,并將很快發(fā)展起來。還有其它許多以開關(guān)電源技術(shù)為核心的專用電源、工業(yè)電源正在等待著人們?nèi)ラ_發(fā)。

參考文獻

(l)林渭勛:淺談半導(dǎo)體高頻電力電子技術(shù),電力電子技術(shù)選編,浙江大學(xué),384-390,1992

(2)季幼章:迎接知識經(jīng)濟時代,發(fā)展電源技術(shù)應(yīng)用,電源技術(shù)應(yīng)用,N0.2,l998

(3)葉治正,葉靖國:開關(guān)穩(wěn)壓電源。高等教育出版社,1998

張國君,男,1962年生,博士后,副總工程師,1997年5月于天津大學(xué)測控博士后流動站出站,現(xiàn)從事通信電源和電力直流操作電源系統(tǒng)的研究開發(fā)工作,并在清華大學(xué)電力電子研究中心進行第二站博士后研究工作。

第3篇

引言

隨著我國城市化進程的加速和城鄉(xiāng)人民生活水平的提高,在城市特別是大中城市配電網(wǎng)絡(luò)中電纜應(yīng)用的比例越來越高。從而帶動了電纜附件產(chǎn)品的強大需求,也促進了其產(chǎn)品研發(fā)改進的速度。

一、電纜附件的作用

在電纜終端和接頭處,由于電纜金屬護套和屏蔽層斷開,使得電場分布比電纜本體復(fù)雜得多,在電纜終端電場存在軸向應(yīng)力,因此需要使用電纜附件來實現(xiàn)電纜的連續(xù)和駁接,即一個能滿足一定絕緣與密封要求的連接裝置。

電纜有導(dǎo)體、絕緣、屏蔽和護層等四個主要結(jié)構(gòu)層,電纜附件中作為電纜線路組成部分的電纜終端頭、中間接頭,必須使電纜的四個結(jié)構(gòu)層分別得到延續(xù),并且實現(xiàn)導(dǎo)體連接良好,絕緣可靠,密封良好和足夠的機械強度,確保電纜終端和電纜接頭的質(zhì)量,才能保證整個電纜配電網(wǎng)絡(luò)的供電可靠性。

二、35kV及以下中壓電纜附件的分類

目前,按照主絕緣成型工藝,常用35kV及以下電纜終端和中間接頭主要可分為繞包式、熱縮式、冷縮式和預(yù)制式等四種常用產(chǎn)品型式。此外還有應(yīng)用于特定產(chǎn)品范圍的澆鑄式和可分離式電纜附件產(chǎn)品。

2.1繞包式電纜附件繞包式電纜附件是指絕緣和屏蔽均使用帶材繞包而成的電纜附件,其應(yīng)力的控制方式采用應(yīng)力錐或采用高介電常數(shù)的應(yīng)力控制帶,對施工人員工藝水平要求較高,施工工藝較為復(fù)雜,已逐漸被現(xiàn)場淘汰。

2.2熱縮式電纜附件利用高分子聚合物具有的“彈性記憶”效應(yīng)的原理,開發(fā)出各種熱縮管材、分支套、雨裙等熱收縮預(yù)制件,按程序套裝在經(jīng)過處理的電纜末端或接頭處,對其加熱,可使其收縮緊箍在所需位置。

熱縮電纜附件工藝簡便,價格低廉,便于維護。但也存在由于環(huán)境溫度變化其不可避免存在的“呼吸作用”而引起的使用壽命縮短等問題,從而影響供電可靠性。

2.3冷縮式電纜附件目前工程應(yīng)用的冷收縮管和其他冷收縮預(yù)制件,是以硅橡膠或三元乙丙橡膠為主要原料,經(jīng)特殊配方合成后,預(yù)擴張在螺旋支撐芯線上而成,安裝使用時,無須任何外部熱源,只要拉開支撐芯線就會收縮,并緊箍在所需位置上。冷縮式電纜附件要求一定要在規(guī)定的使用期限內(nèi)使用,并且價格較高。

2.4預(yù)制式電纜附件利用橡膠材料,將電纜附件內(nèi)的增強絕緣和半導(dǎo)電屏蔽層在工廠內(nèi)模制成一個整體或若干部件,現(xiàn)場套裝在經(jīng)過處理的電纜末端或中間接頭處而形成的電纜附件叫預(yù)制式電纜附件。

預(yù)制式電纜附件可以在工廠進行相應(yīng)的出廠例行試驗,進一步提高了電纜終端的運行可靠性,同時也大大降低了現(xiàn)場安裝工作量。

從結(jié)構(gòu)上而言,冷縮電纜附件和預(yù)制式電纜附件基本一致,僅僅是材料性能和處理上有些差異。

2.5澆鑄式電纜附件利用熱固性樹脂材料,現(xiàn)場澆鑄在經(jīng)過處理后的電纜末端或接頭處的模子或盒體內(nèi),固化后而形成的電纜附件。特別適用于塑料擠包絕緣電纜和浸紙絕緣電纜的互連。

2.6可分離連接器允許電纜和其他設(shè)備和電纜連接或斷開的全絕緣電纜附件,如終端、接頭和分支接頭等。可分離連接器主要的使用對象是全密封開關(guān)柜、充氣環(huán)網(wǎng)單元、電纜分支箱等設(shè)備,可以看作是一種新型的電纜終端。并且更多的使用了預(yù)制式終端的結(jié)構(gòu)。

從上述電纜附件產(chǎn)品分類中不難看出,可簡化現(xiàn)場安裝要求的預(yù)制及冷縮技術(shù)已經(jīng)在電纜附件發(fā)展中占有重要的地位。

三、電纜附件產(chǎn)品新技術(shù)的應(yīng)用

3.1導(dǎo)體連接對導(dǎo)體連接的基本技術(shù)要求是∶導(dǎo)體連接良好:對于終端,電纜導(dǎo)電線芯與出線桿、接線端之間要連接良好;對于中間接頭,電纜導(dǎo)體與連接管之間要連接良好。即要求連接點的接觸電阻小而且穩(wěn)定。與同長度同截面導(dǎo)線的電阻比較,新裝比值應(yīng)不大于1。

目前現(xiàn)場多采用壓接技術(shù),需要一定的專業(yè)設(shè)備。而采用螺栓連接技術(shù),現(xiàn)場施工時僅需要一支力矩扳手,就能達到導(dǎo)體連接基本技術(shù)的要求。從而簡化了對安裝設(shè)備的專業(yè)要求。而且對于需要去除不導(dǎo)電氧化層的鋁電纜連接,事先也不需要進行專門的去氧化層處理。

3.2絕緣材料三元乙丙橡膠和硅橡膠材料在預(yù)制式電纜附件中都得到了廣泛應(yīng)用,在高壓電纜附件領(lǐng)域,比較而言,可以分為以硅橡膠為基材的歐式結(jié)構(gòu)和以三元乙丙橡膠為基材的日式結(jié)構(gòu)。而在中壓領(lǐng)域,經(jīng)過改進的三元乙丙橡膠電纜附件比硅橡膠同類產(chǎn)品擁有更好的機械強度和抗撕裂性能。

第4篇

現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進入現(xiàn)代電力電子時代。

1.1整流器時代

大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內(nèi)燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當時國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時的產(chǎn)物。

1.2逆變器時代

七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)取_@時的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。

1.3變頻器時代

進入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細加工技術(shù)和高壓大電流技術(shù)有機結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。

2.現(xiàn)代電力電子的應(yīng)用領(lǐng)域

2.1計算機高效率綠色電源

高速發(fā)展的計算機技術(shù)帶領(lǐng)人類進入了信息社會,同時也促進了電源技術(shù)的迅速發(fā)展。八十年代,計算機全面采用了開關(guān)電源,率先完成計算機電源換代。接著開關(guān)電源技術(shù)相繼進人了電子、電器設(shè)備領(lǐng)域。

計算機技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日"能源之星"計劃規(guī)定,桌上型個人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。

2.2通信用高頻開關(guān)電源

通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源),同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓撲結(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。

2.4不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。

現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

2.5變頻器電源

變頻器電源主要用于交流電機的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機實現(xiàn)無級調(diào)速。

國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進一步發(fā)展方向。

2.6高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。

2.7大功率開關(guān)型高壓直流電源

大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機和CT機等大型設(shè)備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

國內(nèi)對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8電力有源濾波器

傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂"電力公害",例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。

電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

2.9分布式開關(guān)電源供電系統(tǒng)

分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)??刂萍呻娐纷骰静考?利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓撲結(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴大。

分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應(yīng)加熱電源、電動機驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。

3.高頻開關(guān)電源的發(fā)展趨勢

在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達到近于理想的負載匹配和驅(qū)動控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。

3.1高頻化

理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)"整流行業(yè)"的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為"開關(guān)變換類電源",其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術(shù)含量的價值。

3.2模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實質(zhì)上都屬于"標準"功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動保護電路也裝到功率模塊中去,構(gòu)成了"智能化"功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設(shè)計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了"用戶專用"功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設(shè)計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺新型的開關(guān)電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時間。

3.3數(shù)字化

在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計和工作的。在六、七十年代,電力電子技術(shù)擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯等技術(shù)的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設(shè)計來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計算機控制時,數(shù)字化技術(shù)就離不開了。

3.4綠色化

電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設(shè)備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。

總而言之,電力電子及開關(guān)電源技術(shù)因應(yīng)用需求不斷向前發(fā)展,新技術(shù)的出現(xiàn)又會使許多應(yīng)用產(chǎn)品更新?lián)Q代,還會開拓更多更新的應(yīng)用領(lǐng)域。開關(guān)電源高頻化、模塊化、數(shù)字化、綠色化等的實現(xiàn),將標志著這些技術(shù)的成熟,實現(xiàn)高效率用電和高品質(zhì)用電相結(jié)合。這幾年,隨著通信行業(yè)的發(fā)展,以開關(guān)電源技術(shù)為核心的通信用開關(guān)電源,僅國內(nèi)有20多億人民幣的市場需求,吸引了國內(nèi)外一大批科技人員對其進行開發(fā)研究。開關(guān)電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產(chǎn)值需求的電力操作電源系統(tǒng)的國內(nèi)市場正在啟動,并將很快發(fā)展起來。還有其它許多以開關(guān)電源技術(shù)為核心的專用電源、工業(yè)電源正在等待著人們?nèi)ラ_發(fā)。

參考文獻:

[1]林渭勛:淺談半導(dǎo)體高頻電力電子技術(shù),電力電子技術(shù)選編,浙江大學(xué),384-390,1992。

[2]季幼章:迎接知識經(jīng)濟時代,發(fā)展電源技術(shù)應(yīng)用,電源技術(shù)應(yīng)用,N0.2,l998。

[3]葉治正,葉靖國:開關(guān)穩(wěn)壓電源。高等教育出版社,1998。

第5篇

1.1PID控制原理[1,2]

常規(guī)PID控制系統(tǒng)原理框圖如圖1所示。

PID控制器是一種線性控制器,它根據(jù)給定值r(t)與實際輸出構(gòu)成控制偏差:

將此偏差的比例(P)、積分(I)和微分(D)通過線性組合構(gòu)成控制量,對被控對象進行控制。其控制規(guī)律為:

式中,Kp為比例系數(shù),T1為積分時間常數(shù),TD為微分時間常數(shù)。

在PID控制中,比例項用于糾正偏差,積分項用于消除系統(tǒng)的穩(wěn)態(tài)誤差,微分項用于減小系統(tǒng)的超調(diào)量,增加系統(tǒng)穩(wěn)定性。PID控制器的性能就決定于Kp、T1和TD這3個系數(shù)。如何選用這3個系數(shù)是PID控制的核心。

1.2數(shù)字PID控制算法選擇

設(shè)計和調(diào)整數(shù)字PID控制器的任務(wù)就是根據(jù)被控對象和系統(tǒng)要求,選擇合適的PID模型,將其進行離散化處理,編出計算機程序由微處理器實現(xiàn),最后確定KP、T1、TD、和T,T為采樣周期。微處理器控制是一種采樣控制,它只能根據(jù)采樣時刻的偏差值計算控制量,因此,必須對PID模型進行離散化處理。

用矩形方法數(shù)值積分代替式(3)中的積分項,對式(3)中的導(dǎo)數(shù)項用后向差分逼近,經(jīng)推理可得到基本PID控制的位置式算法:

式中k——采樣序號,k=0,1,2,……

U(k)——第k次采樣時刻輸出值

E(k)——第k次采樣時輸入的偏差值

E(k-1)——第(k-1)次采樣時刻輸入的偏差值

K1——積分系數(shù),K1=KpT/T1

KD——微分數(shù)系,KD=KpTD/T1

在數(shù)字控制系統(tǒng)中,PID控制規(guī)律是用程序來實現(xiàn)的,因而具有更大的靈活性。由于基本PID控制中引入了積分環(huán)節(jié),其目的主要是為了消除靜差,提高精度。但在柴油機調(diào)速過程中,突加突減負載時,會引起轉(zhuǎn)速的較大波動,導(dǎo)致短時間內(nèi)轉(zhuǎn)速出現(xiàn)較大偏差,通過PID積分運算積累,超調(diào)量過大,系統(tǒng)產(chǎn)生振蕩,嚴重影響發(fā)電機組輸出電能的品質(zhì)。為避免PID控制中積分項引起的超調(diào),提高其調(diào)節(jié)品質(zhì),擬采用積分分離法對基本PID控制進行改進,簡稱變速積分PID。變速積分PID的基本思路是設(shè)法改變積分項的累加速度,使其與偏差大小相對應(yīng),偏差越大,積分越慢;反之,則越快。

式中,A、B為積分區(qū)間。

變速積分PID算法為:

式中,U1(k)為第k次采樣時刻PID運算的積分部分輸出值。

采用變速積分PID控制,系統(tǒng)具有以下特點:用比例消除大偏差,用積分消除小偏差,可完全消除積分飽和現(xiàn)象;各參數(shù)容易整定,易實現(xiàn)系統(tǒng)穩(wěn)定,而且對A、B兩參數(shù)不要求十分精確;超調(diào)量大大減小,改善了調(diào)節(jié)品質(zhì),適應(yīng)性較強。

2柴油發(fā)電機組數(shù)字調(diào)速系統(tǒng)中PID控制參數(shù)整定[3,4]

數(shù)字PID控制參數(shù)整定的任務(wù)主要是確定數(shù)字PID的參數(shù)KP、T1、TD和T。

對于簡單控制系統(tǒng),可采用理論計算方法確定這些參數(shù)。但由于柴油機調(diào)速系統(tǒng)的工況較為復(fù)雜,其數(shù)學(xué)模型并非十分精確,在此,采用工程整定常用的擴充臨界比例帶法,結(jié)合經(jīng)驗法再對參數(shù)進行調(diào)整,得到最終的PID參數(shù)。

(1)采樣周期T的選擇

在數(shù)字控制系統(tǒng)中,采樣周期T是一個比較重要的因素,采樣周期的選取,應(yīng)與PID參數(shù)的整定綜合考慮。

首先,采樣周期T的選取應(yīng)滿足以下要求:遠小于對象擾動周期;比對象時間常數(shù)小得多;盡量縮短采樣周期,以改善調(diào)節(jié)品質(zhì)。

該系統(tǒng)中,PID調(diào)節(jié)控制過程是在定時中斷狀態(tài)下完成的,因此,采樣周期T的大小必須保證中斷服務(wù)程序的正常運行。在不影響中斷程序運行的情況下,可取采樣周期T=0.1τ(τ為柴油機的純滯后時間)。當中斷程序運行時間Tz大于0.1τ時,則取T=Tz,

(2)臨界振蕩周期Ts的確定

初始確定數(shù)字PID參數(shù)時,在用上述方法確定采樣周期T的條件下,從調(diào)速系統(tǒng)的PID調(diào)節(jié)回路中,去掉數(shù)字控制器的微分控制作用和積分控制作用,只采用比例調(diào)節(jié)環(huán)節(jié)來確定系統(tǒng)的振蕩周期Ts和臨界比例系數(shù)Ks。由單片機系統(tǒng)自動控制比例系數(shù)KP,并逐漸增大Kp,直到系統(tǒng)出現(xiàn)持續(xù)的等幅振蕩,然后由單片機系統(tǒng)自動記錄并顯示調(diào)速系統(tǒng)發(fā)生等幅振蕩時的臨界比例度δ和相應(yīng)的臨界振蕩周期Ts。

控制度就是以模擬調(diào)節(jié)器為基礎(chǔ),定量衡量數(shù)字控制系統(tǒng)與模擬調(diào)節(jié)器對同一對象的控制效果??刂菩Ч褪遣捎媚骋环e分準則,根據(jù)系統(tǒng)在規(guī)定的輸入下的輸出響應(yīng),使用該準則取最小值時的最

如前所述,采樣周期T的長短會影響系統(tǒng)的控制品質(zhì),同樣是最佳整定,數(shù)字控制系統(tǒng)的品質(zhì)要低于模擬系統(tǒng)的控制品質(zhì)。即控制度總是大于1的,且控制度越大,相應(yīng)的數(shù)字控制系統(tǒng)品質(zhì)越差。

為獲得與模擬控制器相當?shù)钠焚|(zhì),控制度選為1.05。不同控制度時,擴充臨界比例帶法PID參數(shù)計算公式

(4)KP、K1、KD、T的求取

根據(jù)實驗所得Ks和Ts及選定的控制度,按表1計算出數(shù)字PID參數(shù)Kp、T1、TD和T。

(5)控制效果的調(diào)節(jié)

按求得的參數(shù)值在調(diào)速控制系統(tǒng)中運行,并觀察控制效果。如控制效果達不到控制要求,可基于以下原則,根據(jù)經(jīng)驗法對參數(shù)做適當調(diào)整。

①增大比例系數(shù)Kp,將加快系統(tǒng)的響應(yīng)速度,但過大會使系統(tǒng)產(chǎn)生較大超調(diào),甚至產(chǎn)生振蕩。

②增大積分時間T1,有利于減小超調(diào),減少振蕩,使系統(tǒng)更加穩(wěn)定,但會增加系統(tǒng)過渡過程時間。

③增大微分時間常數(shù)TD有利于加快系統(tǒng)的響應(yīng),使超調(diào)減小,穩(wěn)定性增加,但系統(tǒng)對擾動的抑制能力減弱,對擾動有較敏感的響應(yīng)。

基于上述原則,調(diào)整PID參數(shù)時,應(yīng)先比例、后積分、再微分進行調(diào)整。

參考文獻:

[1]陶永華,尹怡欣,葛蘆生.新型PID控制及其應(yīng)用[M].機械工業(yè)出版社,1998.

[2]王福瑞.單片微機測控系統(tǒng)設(shè)計大全[M].北京航空航天大學(xué)出版社,1998.

第6篇

關(guān)鍵詞:大型水輪發(fā)電機;定子鐵芯;推力軸承

中圖分類號:TM312 文獻標識碼:A

中國有著豐富的水資源,是水電行業(yè)發(fā)展的基礎(chǔ)。隨著諸多大型水利工程的建成,有效的推進了我國水電發(fā)展,對應(yīng)的水電機組不斷的朝向大型及超大型發(fā)展。根據(jù)國內(nèi)水利發(fā)電工程學(xué)會相關(guān)統(tǒng)計資料顯示,到2020年,國內(nèi)的700MW水輪發(fā)電機數(shù)目將會超出150臺。大型水輪發(fā)電機具備非正常停機損失大、定轉(zhuǎn)子額定電壓較高以及發(fā)電機定子繞組的中性點引出方法極多等自身特點。

一、大型水輪發(fā)電機技術(shù)問題分析

如圖1所示,定子鐵芯受力簡示圖。

1 定子鐵芯熱膨脹

隨著國際科學(xué)技術(shù)的不斷發(fā)展,對應(yīng)技術(shù)較為先進的國家,水輪發(fā)電機單機容量逐漸擴大,其對應(yīng)定子鐵芯的直徑也是持續(xù)增加,由最初的幾米持續(xù)發(fā)展至十幾米,或者說還有超過20m的。相對直徑在成倍的提高,緊接著其鐵芯溫升所產(chǎn)生的對應(yīng)徑向尺寸的膨脹量是在飛速提升,鐵芯以及機座之間的溫差所出現(xiàn)的徑向尺寸過量也隨之提升。水輪發(fā)電機定子鐵芯,其鐵芯的溫度升至為50℃時,那么鐵芯徑向膨脹就會達到11mm,鐵芯以及機座溫差是20℃時,那么其鐵芯以及機座的半徑方向過盈量就大概會是2mm,進而促使定子鐵芯因為其受到了機座徑向壓力而存在極大的切向應(yīng)力。

2 定子鐵芯壓緊質(zhì)量

在實際運作過程中,大型水輪發(fā)電機盡管其機座能夠自由伸縮膨脹,對應(yīng)的鐵芯軸向單位相關(guān)面積壓力會大幅度下降,對應(yīng)的定子鐵芯就會出現(xiàn)翹曲的情況。要是其機座并不是全部膨脹,其對應(yīng)的單位壓力面積承受壓力會保持在10kgf/cmZ之下,這時其對應(yīng)定子鐵芯也還是會極有可能存在翹曲情況。

3 定子鐵芯分瓣

定子鐵芯的結(jié)構(gòu)是分瓣狀的,關(guān)于定子鐵芯的裝配,應(yīng)重視其鐵芯合縫位置會受到分布不均勻以及很難預(yù)測的對應(yīng)擠壓力,該擠壓力對定子鐵芯會造成不良的影響,這樣就在很大的程度上加劇了翹曲情況的出現(xiàn)。導(dǎo)致定子鐵芯在受到相關(guān)的力之后出現(xiàn)形變以及振動、損壞等。

4 轉(zhuǎn)子支架剛度及圓盤形結(jié)構(gòu)

水輪發(fā)電機轉(zhuǎn)子對應(yīng)支架的結(jié)構(gòu)形式一般是根據(jù)其發(fā)電機容量以及轉(zhuǎn)速和尺寸、運輸條件等相關(guān)條件來合理選定。通常在中型及小型或者是高速水輪發(fā)電機上利用較為簡單的圓盤式或者是無支架轉(zhuǎn)子結(jié)構(gòu)。對于大型水輪發(fā)電機來講,其因為會受到相關(guān)運輸條件的制約,一般會利用中心體以及支臂裝配組合形成支臂式的轉(zhuǎn)子支臂。關(guān)于其對應(yīng)容量以及尺寸非常大的水輪發(fā)電機,近年來,國內(nèi)通常使用的發(fā)電站裝配以及拼焊,大多都是多層圓盤式轉(zhuǎn)子支架。

二、大型水輪發(fā)電機關(guān)鍵技術(shù)改善

1 水輪機模型轉(zhuǎn)輪水力設(shè)計

水輪機的最關(guān)鍵部件就是轉(zhuǎn)輪,其相關(guān)性能直接關(guān)系著對應(yīng)發(fā)電機運作經(jīng)濟性以及安全性、穩(wěn)定性。關(guān)于水輪機模型轉(zhuǎn)輪水力性能設(shè)計,國內(nèi)外的研究差距很大,很多有關(guān)項目對應(yīng)轉(zhuǎn)輪是使用國外引進的相關(guān)技術(shù),其自開發(fā)轉(zhuǎn)輪效率大約是95%,國外所引進的轉(zhuǎn)輪效率能夠達到94%以上。國內(nèi)很多較大型工程有效的引進了三維粘性流體數(shù)據(jù)庫為其最主要的基礎(chǔ),再合理運用其對應(yīng)實驗技術(shù)以及相關(guān)模型制造水平的不斷提升,國內(nèi)在很短的時間內(nèi)關(guān)于模型轉(zhuǎn)輪水力設(shè)計,跟上了世界的先進水平。

2 大型水輪發(fā)電機推力軸承技術(shù)

大型發(fā)電機最關(guān)鍵的構(gòu)成部分就是推力軸承,其對應(yīng)的設(shè)計以及制造技術(shù)是不是最優(yōu)化會直接關(guān)聯(lián)到水輪發(fā)電機的安全可靠運作。想要合理的對其進行優(yōu)化,就應(yīng)該注重其結(jié)構(gòu)以及性能參數(shù),以便于有效提升運作的可靠性。有關(guān)企業(yè)對其投入了大量的人力物力進行全方位的分析研究。自主開發(fā)水輪發(fā)電機推力軸承的熱彈性流體動力的性能相關(guān)計算分析軟件,構(gòu)建了三萬噸的對應(yīng)推力軸承試驗臺,該實驗是現(xiàn)今世界上相關(guān)運作中最大推力軸承試驗臺。相關(guān)的實驗室研究結(jié)果也在很多較大的水電站對應(yīng)推力軸承運作實測過程中展開了一定程度的對比,以便于有效健全和提升推力軸承設(shè)計以及制作技術(shù)和測試技術(shù)。這些相關(guān)的工作也為水輪發(fā)電機的推力軸承設(shè)計以及制作工藝積累了相當?shù)慕?jīng)驗。

3 大型水輪發(fā)電機轉(zhuǎn)子接地保護方式

大型水輪發(fā)電機組的額定轉(zhuǎn)子電壓通常是較高的,可以超出500V,在強勵時是最高的,并且還伴隨著非常顯著的交流分量,這時直接性的將其取出的危險性極高,并且其對應(yīng)電纜更不好選擇。我國的很多較大型水電機組在進行工程設(shè)計時大都是利用轉(zhuǎn)子接地保護和失磁保護,并運用轉(zhuǎn)子電壓測量對應(yīng)附件再就地安裝在相關(guān)的勵磁體系之內(nèi),把較大功率的電阻安置在相關(guān)勵磁體系屏柜之內(nèi),其對應(yīng)轉(zhuǎn)子電阻在分壓之后會長距離的接進發(fā)電機的保護屏柜中,這時轉(zhuǎn)子的接地保護功能就會在發(fā)電機的屏柜之內(nèi)很好的實現(xiàn)。

大型水輪發(fā)電機的機組轉(zhuǎn)子接地保護應(yīng)該合理的就地安置在對應(yīng)勵磁體系室內(nèi),其失磁保護需要的相關(guān)電壓最好是通過變送器之后再接進發(fā)電機的保護設(shè)備上,這樣能夠合理避免掉其高壓電纜存在長距離引線,在很大程度上簡化了勵磁回路并節(jié)約了長距離進行高壓控制的電纜費用。

4 大型水輪發(fā)電機定子繞組主絕緣技術(shù)

有關(guān)公司關(guān)于定子繞組的地主絕緣是應(yīng)用了F級的桐馬環(huán)氧玻璃粉云母系統(tǒng),其電機的主絕緣結(jié)構(gòu)以及防暈結(jié)構(gòu)和對應(yīng)繞組槽部、端部的相關(guān)固定結(jié)構(gòu)與各類絕緣材料,總體上來講均是都實現(xiàn)了國產(chǎn)化,并且國產(chǎn)的相關(guān)絕緣材料性能均是達到了國際化水平。線棒是多膠帶連接式包扎以及其外包防暈帶絕緣結(jié)構(gòu),運用對應(yīng)加熱橫壓來進行固化,以致其能夠一次成型,其對應(yīng)線棒的尺寸應(yīng)該是統(tǒng)一的,且要具備較好的互換性。該F級桐馬環(huán)氧玻璃粉云母帶的絕緣運作經(jīng)驗極為豐富以及對應(yīng)水電站不同電壓等級的較大型水輪發(fā)電機和其相關(guān)的出口機組之上。

5 大型水電機組結(jié)構(gòu)剛強度分析技術(shù)

經(jīng)過國內(nèi)外諸多企業(yè)的相關(guān)設(shè)計,其關(guān)鍵器件剛強度性能展開大量有限元分析以及比對,也找出了不同企業(yè)對于同一個器件的設(shè)計差異。關(guān)于其結(jié)構(gòu)拓撲以及幾何形狀和板厚尺寸等展開了系統(tǒng)化的分析,找出其關(guān)聯(lián)機組器件剛強度的關(guān)鍵因素,對部件的設(shè)計進行的全方位的深刻認識,形成了一定的結(jié)構(gòu)模式,再運用其對應(yīng)參數(shù)來實現(xiàn)建模,有效達到結(jié)構(gòu)的優(yōu)化及分析過程自動化。其對應(yīng)的運用變量分析技術(shù)定量分析出對應(yīng)主參數(shù),并給設(shè)計師所需要的相關(guān)設(shè)計曲線,進而給結(jié)構(gòu)改善及創(chuàng)新提供參考。運用尺寸以及形狀充分結(jié)合優(yōu)化技術(shù),能夠合理的找出板厚的配置以及幾何形狀均是合理化的最優(yōu)化結(jié)構(gòu)。諸多水電機組結(jié)構(gòu)器件優(yōu)化設(shè)計均采用了相關(guān)研究成果,并得到了顯著的效果。

結(jié)語

水輪機正常的運作狀態(tài)下,其對應(yīng)的定子鐵芯會承受切向電磁扭矩以及相關(guān)軸向重力,還有在水輪機快速運作時其對應(yīng)定子鐵芯會存在一定程度的發(fā)熱,機座以及鐵芯均是不一樣的運作情況,所以在溫度不一樣的狀態(tài)下就會存在溫差,對應(yīng)的高溫鐵芯會出現(xiàn)膨脹以及其座機的制約,座機對于鐵芯具備一個徑向壓力,和相關(guān)鐵芯膨脹力剛好是相反的;以及其對應(yīng)的定子鐵芯會受到轉(zhuǎn)子所具備的徑向磁拉力,和分瓣定子會被拼為整圓形態(tài)以配合其鐵芯共同進行運作。水輪機在運作時其鐵芯會受到一定的熱膨脹,致使總體鐵芯對應(yīng)縫合面會受到不一樣方向所帶來的擠壓力,這樣會導(dǎo)致鐵芯出現(xiàn)損失的情況。因此,對大型水輪發(fā)電機關(guān)鍵技術(shù)問題進行詳細分析研究是勢在必行的。

參考文獻

[1]王初銘.大型水輪發(fā)電機幾個關(guān)鍵技術(shù)問題的分析[J].大電機技,2013(02).

第7篇

關(guān)鍵詞:節(jié)水灌溉;技術(shù),趨勢,建議

節(jié)水灌溉技術(shù)的發(fā)展不僅是節(jié)水的需要,也是農(nóng)業(yè)現(xiàn)展的需要。發(fā)展節(jié)水灌溉技術(shù)對于推進現(xiàn)代農(nóng)業(yè)、建設(shè)節(jié)約型社會有十分重要的意義。為此,筆者就我國節(jié)水灌溉技術(shù)及發(fā)展趨勢作一探討。

1.節(jié)水灌溉技術(shù)含義及體系

節(jié)水灌溉技術(shù)是比傳統(tǒng)的灌溉技術(shù)明顯節(jié)約用水和高效用水的灌水方法,措施和制度等的總稱。灌溉用水從水源到田間,到被作物吸收、形成產(chǎn)量,主要包括水資源調(diào)配、輸配水、田間灌水和作物吸收等四個環(huán)節(jié)。在各個環(huán)節(jié)采取相應(yīng)的節(jié)水措施,組成一個完整的節(jié)水灌溉技術(shù)體系,包括水資源優(yōu)化調(diào)配技術(shù)、節(jié)水灌溉工程技術(shù)、農(nóng)藝及生物節(jié)水技術(shù)和節(jié)水管理技術(shù)。

節(jié)水灌溉技術(shù)體系主要包括以下幾個方面:(1)灌溉水資源優(yōu)化調(diào)配技術(shù)。主要包括地表水與地下水聯(lián)合調(diào)度技術(shù)、灌溉回歸水利用技術(shù)、多水源綜合利用技術(shù)、雨洪利用技術(shù)。(2)節(jié)水灌溉工程技術(shù)。主要包括渠道防滲技術(shù)、管道輸水技術(shù)、噴灌技術(shù)、微灌技術(shù)、改進地面灌溉技術(shù)、水稻節(jié)水灌溉技術(shù)及抗旱點澆技術(shù)。直接目的是減少輸配水過程的跑漏損失和田間灌水過程的深層滲漏損失,提高灌溉效率。(3)農(nóng)藝及生物節(jié)水技術(shù)。包括耕作保墑技術(shù)、覆蓋保墑技術(shù)、優(yōu)選抗旱品種、土壤保水劑及作物蒸騰調(diào)控技術(shù)。(4)節(jié)水灌溉管理技術(shù)。包括灌溉用水管理自動信息系統(tǒng)、輸配水自動量測及監(jiān)控技術(shù),土壤墑情自動監(jiān)測技術(shù)、節(jié)水灌溉制度等。

2.節(jié)水灌溉新技術(shù)

目前,比較有發(fā)展?jié)摿Φ墓?jié)水灌溉新技術(shù)是:(1)與生物技術(shù)相結(jié)合的作物調(diào)控灌溉技術(shù)。就是從作物生理角度出發(fā),在一定時期主動施加一定程度有益的虧水度,使作物經(jīng)歷有益的虧水鍛煉,改善品質(zhì),控制上部旺長,實現(xiàn)矮化密植,到達節(jié)水增產(chǎn)的目的。(2)應(yīng)用3S技術(shù)的精細灌溉技術(shù)。就是運用全球衛(wèi)星定位系統(tǒng)(GPS)和地理信息系統(tǒng)(GIS),遙感技術(shù)(RS)和計算機控制系統(tǒng),實時獲取農(nóng)用小區(qū)作物生長實際需求的信息,通過信息處理與分析,按需給作物進行施水的技術(shù),可以最大限度提高水資源的利用率和土地的產(chǎn)業(yè)率。T是農(nóng)田灌溉學(xué)科發(fā)展的熱點和農(nóng)業(yè)新技術(shù)革命的重要內(nèi)容。(3)智能化節(jié)水灌溉裝備技術(shù)。就是把生物學(xué)、自動控制、微電子、人工智能、信息科學(xué)等高新技術(shù)集成節(jié)水灌溉機械與設(shè)備,適時地檢測土壤和作物的水分,按照作物不同的需水要求來實施變量施水,達到最優(yōu)的節(jié)水增產(chǎn)效果。

3.節(jié)水灌溉技術(shù)發(fā)展趨勢

我國的節(jié)水灌溉技術(shù)發(fā)展呈現(xiàn)以下趨勢:(1)噴灌技術(shù)仍為大田農(nóng)作物機械化節(jié)水灌溉的主要技術(shù),其研究方向是進一步節(jié)能及綜合利用。不同噴灌機型有各自的優(yōu)缺點,要因地制宜綜合考慮。軟管卷盤式噴灌機及人工移動式噴灌機比較適合我國國情。(2)地下灌溉已被世人公認是一種最有發(fā)展前景的高效節(jié)水灌溉技術(shù)。盡管目前還存在一些問題,應(yīng)用推廣速度較慢,但隨著關(guān)鍵技術(shù)的解決,今后將會得到一定的發(fā)展。(3)地面灌溉仍是當今世界占主導(dǎo)地位的灌水技術(shù)。隨著高效田間灌水技術(shù)的成熟,輸配水有低壓管道化方向發(fā)展的趨勢。(4)農(nóng)業(yè)高效節(jié)水灌溉技術(shù)管理水平越來越高。應(yīng)用專家系統(tǒng)、計算機網(wǎng)絡(luò)技術(shù)、控制技術(shù)資源數(shù)據(jù)庫、模擬模型等技術(shù)的集成,達到時,空、量、質(zhì)上的精確灌水,是今后攻關(guān)的重點。(5)節(jié)水綜合技術(shù)的開發(fā)利用,是提高水分利用率和水分利用效率的重要途徑,也是今后節(jié)水灌溉發(fā)展的方向。

4.發(fā)展節(jié)水灌溉技術(shù)的政策建議

(1)提高發(fā)展節(jié)水灌溉技術(shù)的認識。我國是一個水資源短缺的國家,隨著人口增加、經(jīng)濟發(fā)展、社會進步,農(nóng)業(yè)灌溉用水要在用水總量基本不增加的情況下保障我國糧食安全,只能走內(nèi)涵式發(fā)展的道路,灌溉必須走節(jié)水型的發(fā)展道路。因此,我們應(yīng)加大對發(fā)發(fā)展節(jié)水灌溉技術(shù)的宣傳教育力度,使全社會都來關(guān)心節(jié)水灌溉技術(shù),形成一個較好的節(jié)水灌溉技術(shù)發(fā)展環(huán)境。

(2)形成發(fā)展節(jié)水灌溉技術(shù)內(nèi)在機制。通過制定和運用好水價、水權(quán)這些經(jīng)濟手段,對農(nóng)業(yè)用水需求進行有效調(diào)控,削弱低效益膨脹型的用水需求,杜絕無效益浪費型的用水需求,促進節(jié)約農(nóng)業(yè)用水的需求,從而推進節(jié)約灌溉技術(shù)發(fā)展。

第8篇

摘要:廣播電視信號傳輸和播出手段主要有微波、衛(wèi)星、光纜3種,本文簡述了的廣播電視移動接收的制式及技術(shù)。

科學(xué)技術(shù)的飛速發(fā)展給各行各業(yè)帶來了挑戰(zhàn)和機遇,隨著廣播事業(yè)的不斷發(fā)展和進步,移動接收成為發(fā)展方向之一。廣播電視雖然有很長的歷史,但移動接收的進展卻不盡人意。即使是調(diào)頻廣播,在汽車高速行駛中的接收也往往遇到困難。電視的移動接收問題要比廣播的移動接收困難得多,所以至今還沒有得到解決,所以廣播電視的移動接收引起廣電界的重視。

一、移動電視

移動電視是數(shù)字電視地面廣播的重要應(yīng)用。數(shù)字電視地面廣播在應(yīng)用需求上要求實現(xiàn)移動和便攜接收的功能,使整個技術(shù)系統(tǒng)的要求最高。它具備無線數(shù)字系統(tǒng)所共有的優(yōu)點,較之衛(wèi)星接收,有實現(xiàn)容易、價格低廉的特點;較之有線接收不易受城市施工建設(shè)、自然災(zāi)害戰(zhàn)爭等因素造成的斷網(wǎng)影響。移動和便攜的獨特優(yōu)勢使該系統(tǒng)能滿足現(xiàn)代信息社會“信息到人”的要求,也就是無論何人何時在何地均能任意獲取他想得到的信息。

二、移動接收制式

眾所周知,地面數(shù)字電視廣播系統(tǒng)目前有多種制式,除了國外正在使用的幾種標準外,還有我國自己提出的若干種制式。這些制式總體上可以分為單載波方式和多載波方式兩類,美國用的ATSC是單載波的,歐洲的DVB-T是多載波的。國外主要有三種數(shù)字電視地面廣播標準:歐洲的DVB-T(DigitalVideoBroadcasting-Terrestrial)、美國的ATSC(AdvancedTelevisionSystemsCommittee)和日本的ISDB-T(IntegratedServicesDigitalBroadcastingTerrestrial)(綜合業(yè)務(wù)數(shù)字廣播)。

ATSC采用的是單載波調(diào)制方式(VSB),抗多徑干擾和抗多譜勒效應(yīng)能力差,難以建立單頻網(wǎng)和進行移動接收。ISDB-T雖然支持單頻網(wǎng)和移動接收的應(yīng)用要求,但是該技術(shù)應(yīng)用較少。從世界各地對數(shù)字電視地面廣播標準的采用情況來看,DVB-T標準較ATSC和ISDB-T更具優(yōu)勢。DVB-T是歐洲D(zhuǎn)VB系列標準中較新的一個標準(此外還有有線數(shù)字電視標準DVB-C,以及衛(wèi)星數(shù)字電視標準DVB-S),也是最復(fù)雜的DVB傳輸系統(tǒng)。此標準是1998年2月批準通過的。DVB-T標準的核心是MPEG-2數(shù)字視音頻壓縮編碼,采用編碼正交頻分復(fù)用COFDM(CodedOrthogonalFrequencyDivisionMultiplexing)調(diào)制方式,適用于大范圍多發(fā)射機的8k載波方式。為高清晰度電視(HDTV)信號傳輸提供大于20Mbps的凈荷碼率,支持簡單天線室內(nèi)固定接收。為標準清晰度電視(SDTV)信號傳輸提供大于5Mbps的凈荷碼率,并能在車速移動條件下支持移動接收。具有單頻組網(wǎng)能力。目前采用DVB-T標準的國家和地區(qū)有德國、西班牙、挪威等歐洲國家及澳大利亞、新加坡等其它國家。其中新加坡和德國等國將移動接收和手持設(shè)備作為主要方向。歐洲的DVB-T標準最初是為便攜和固定接收而設(shè)計,它采用的是COFDM(編碼正交頻分復(fù)用)多載波調(diào)制方式,其調(diào)制參數(shù)(如星座圖、編碼率、保護間隔等)可調(diào),可提供120種常規(guī)模式和1200種分級模式。隨后,針對DVB-T(DigitalvideobroadcastingTerrestrial)在移動接收中的不足,人們提出了一種DVB-H的制式專門用于移動接收,而原有的數(shù)字音頻廣播(DAB)也發(fā)展到播出多媒體。

DVB-H(Digitalvideobroadcastinghandheld),通過地面數(shù)字廣播網(wǎng)絡(luò)向便攜/手持終端提供多媒體業(yè)務(wù)所制定的傳輸標準。該標準是歐洲的數(shù)字電視標準DVB-T的擴展應(yīng)用。和DVB-T相比,DVB-H終端具有功耗更低、移動接收和抗干擾性更強的特點,因此該標準適用于移動電話、手持計算機等小型便攜設(shè)備通過地面數(shù)字電視廣播網(wǎng)絡(luò)接收信號。也可以說DVB-H標準依托DVB-T傳輸系統(tǒng),通過增加一定的附加功能和改進技術(shù)使手機等手持便攜設(shè)備能夠在固定和移動狀態(tài)下穩(wěn)定地接收廣播電視信號。DVB-H采用時分數(shù)字多媒體廣播帶寬、以脈沖方式發(fā)送各頻道的數(shù)據(jù)。一般情況下,除接收所需頻道的數(shù)據(jù)外,調(diào)諧器電路在其它時間均處于關(guān)閉狀態(tài),因此可有效減少耗電。DVB-H的基本商業(yè)要求是用電池供電的小的屏幕移動終端。它應(yīng)該能夠在手提式的,移動的和室內(nèi)的環(huán)境中,使用單一天線接收多媒體業(yè)務(wù)。目前看來,數(shù)字移動電視非數(shù)字電視地面廣播莫屬。我國地面數(shù)字電視傳輸標準于2006年8月18日頒布(GB20600-2006),并自2007年8月1日起正式實施(國標地面數(shù)字電視標準簡稱為DTMB-DigitalTerrestrialMultimediaBroadcasting。較早時也稱為DMBTH)。DMB-TH采用了PN序列填充的時域同步正交頻分復(fù)用(TDS-OFDM)多載波調(diào)制技術(shù),這種獨特的先進技術(shù)有機地將信號在時域和頻域的傳輸結(jié)合起來,在頻域傳送有效載荷,在時域通過擴頻技術(shù)傳送控制信號以便進行同步、信道估計,實現(xiàn)快速碼字捕獲和穩(wěn)健的同步跟蹤性能。DMB-TH具有自主知識產(chǎn)權(quán),能較好地支持移動接收,高清數(shù)字電視廣播,單頻組網(wǎng)。

三、小結(jié)

廣播電視的移動接收作為當前的技術(shù)熱點,盡管它的市場前景和受眾分析還有待進一步的研究,但它的技術(shù)還在發(fā)展中。它還有著信號衰落、多普勒效應(yīng)、覆蓋網(wǎng)的建設(shè),接收機(特別是便攜機)的耗電,接收天線的安裝等問題,所以要說哪一種制式最適合移動接收還為時尚早,因為每種制式都會根據(jù)市場的需要及時改進其技術(shù),從而改善其移動接收的性能。

參考文獻:

[1]都研美,劉峰.淺談數(shù)字電視地面廣播技術(shù)[J].廣西輕工業(yè),2007(05).

第9篇

關(guān)鍵詞:無線發(fā)射FSK射頻發(fā)射器nRF902

1概述

nRF902是一個單片發(fā)射器芯片,工作頻率范圍為862~870MHz的ISM頻帶。該發(fā)射器由完全集成的頻率合成器、功率放大器、晶體振蕩器和調(diào)制器組成。由于nRF902使用了晶體振蕩器和穩(wěn)定的頻率合成器,因此,頻率漂移很低,完全比得上基于SAW諧振器的解決方案。nRF902的輸出功率和頻偏可通過外接電阻進行編程。電源電壓范圍為2.4~3.6V,輸出功率為10dBm,電流消耗僅9mA。待機模式時的電源電流僅為10nA。采用FSK調(diào)制時的數(shù)據(jù)速率為50kbits/s。因此,該芯片適合于報警器、自動讀表、家庭自動化、遙控、無線數(shù)字通訊應(yīng)用。

2引腳功能和結(jié)構(gòu)原理

nRF902采用SIOC-8封裝,各引腳功能如表1所列。

表1nRF902的引腳功能

引腳端符號功能

1XTAL晶振連接端/PWR-UP控制

2REXT功率調(diào)節(jié)/時鐘模式/ASK調(diào)制器字輸入

3XO8基準時鐘輸出(時鐘頻率1/8)

4VDD電源電壓(+3V)

5DIN數(shù)字數(shù)據(jù)輸入

6ANT2天線端

7ANT1天線端

8VSS接地端(0V)

圖1所示是nRF902的內(nèi)部結(jié)構(gòu),從圖中可以看出:該芯片內(nèi)含頻率合成器、功率放大器、晶體振蕩器和調(diào)制器等電路。

通過nRF902的天線輸出端可將平衡的射頻信號輸出到天線,該引腳同時必須通過直流通道連接到電源VDD,電源VDD可通過射頻扼流圈或者環(huán)路天線的中心接入。ANT1/ANT2輸出端之間的負載阻抗為200~700Ω。如果需要10dBm的輸出功率,則應(yīng)使用400Ω的負載阻抗。

調(diào)制可以通過牽引晶振的電容來完成。要達到規(guī)定的頻偏,晶振的特性應(yīng)滿足:并聯(lián)諧振頻率fp應(yīng)等于發(fā)射中心頻率除以64,并聯(lián)等效電容Co應(yīng)小于7pF,晶振等效串聯(lián)電阻ESR應(yīng)小于60Ω,全部負載電容,包括印制板電容CL均應(yīng)小于10pF。由于頻率調(diào)制是通過牽引晶振的負載(內(nèi)部的變?nèi)荻O管)完成的,而外接電阻R4將改變變?nèi)荻O管的電壓,因此,改變R4的值可以改變頻偏。

將偏置電阻R2從REXT端連接到電源端VDD對可輸出功率進行調(diào)節(jié)。nRF902的工作模式可通過表2所列方法進行設(shè)置。

表2nPF902的工作模式設(shè)置

引腳

工作模式XTALREXTXO8DIN

低功耗模式(睡眠模式)GND---

時鐘模式VDDGNDVDD-

ASK模式VDDASK數(shù)據(jù)VDD或者GNDVDD

FSK模式VDDVDDVDD或者GNDFSK數(shù)據(jù)

在FSK模式時,調(diào)制數(shù)據(jù)將從DIN端輸入,這是nRF902的標準工作模式。

ASK調(diào)制可通過控制REXT端來實現(xiàn)。當R2連接到VDD時,芯片發(fā)射載波。當R2連接到地時,芯片內(nèi)部的功率放大器關(guān)斷。這兩個狀態(tài)可用ASK系統(tǒng)中的邏輯“1”和邏輯“0”來表示。在ASK模式,DIN端必須連接到VDD。

時鐘模式可應(yīng)用于外接微控制器的情況,nRF902可以給微控制器提供時鐘。它可在XO8端輸出基準時鐘,XO8端輸出的時鐘信號頻率是晶振頻率的1/8。如晶振頻率為13.567MHz,則XO8輸出的時鐘信號頻率為1.695MHz。

在低功耗模式(睡眠模式),芯片的電流消耗僅10nA。在沒有數(shù)據(jù)發(fā)射時,芯片可工作在低功耗模式以延長電池的使用時間。電路從低功耗模式轉(zhuǎn)換到發(fā)射模式需要5ms的時間,從時鐘模式轉(zhuǎn)換到發(fā)射模式需要50μs的時間。

圖2nRF902的應(yīng)用電路